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1130 Chapter 16 Additional Topics in Differential Equations

16.1 Exact First-Order Equations

 Solve an exact differential equation.
 Use an integrating factor to make a differential equation exact.

Exact Differential Equations
In Chapter 6, you studied applications of differential equations to growth and decay 
problems. You also learned more about the basic ideas of differential equations and 
studied the solution technique known as separation of variables. In this chapter, you will 
learn more about solving differential equations and using them in real-life applications. 
This section introduces you to a method for solving the first-order differential equation

M(x, y) dx + N(x, y) dy = 0

for the special case in which this equation represents the exact differential of a  
function z = f (x, y).

Definition of an Exact Differential Equation

The equation

M(x, y) dx + N(x, y) dy = 0

is an exact differential equation when there exists a function f  of two variables 
x and y having continuous partial derivatives such that

fx(x, y) = M(x, y) and fy(x, y) = N(x, y).

The general solution of the equation is f (x, y) = C.

From Section 13.3, you know that if f  has continuous second partials, then

∂M
∂y

=
∂2f
∂y∂x

=
∂2f
∂x∂y

=
∂N
∂x

.

This suggests the following test for exactness.

THEOREM 16.1 Test for Exactness

Let M and N have continuous partial derivatives on an open disk R. The  
differential equation

M(x, y) dx + N(x, y) dy = 0

is exact if and only if

∂M
∂y

=
∂N
∂x

.

Every differential equation of the form

M(x) dx + N( y) dy = 0

is exact. In other words, a separable  differential equation is actually a special type of 
an exact equation.

Exactness is a fragile condition in the sense that seemingly minor alterations in 
an exact equation can destroy its exactness. This is demonstrated in the next example. 97
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 16.1 Exact First-Order Equations 1131

 Testing for Exactness

Determine whether each differential equation is exact.

a. (xy2 + x) dx + x2y dy = 0  b. cos y dx + (y2 − x sin y) dy = 0

Solution

a. This differential equation is exact because

∂M
∂y

=
∂
∂y

[xy2 + x] = 2xy and 
∂N
∂x

=
∂
∂x

[x2y] = 2xy.

  Notice that the equation (y2 + 1) dx + xy dy = 0 is not exact, even though it is 
obtained by dividing each side of the first equation by x.

b. This differential equation is exact because

∂M
∂y

=
∂
∂y

[cos y] = −sin y and 
∂N
∂x

=
∂
∂x

[ y2 − x sin y] = −sin y.

  Notice that the equation cos y dx + (y2 + x sin y) dy = 0 is not exact, even though 
it differs from the first equation only by a single sign. 

Note that the test for exactness of M(x, y) dx + N(x, y) dy = 0 is the same as the 
test for determining whether F(x, y) = M(x, y)i + N(x, y)j is the gradient of a potential 
function (Theorem 15.1). This means that a general solution f (x, y) = C to an exact 
differential equation can be found by the method used to find a potential function for a 
conservative vector field.

 Solving an Exact Differential Equation

See LarsonCalculus.com for an interactive version of this type of example.

Solve the differential equation (2xy − 3x2) dx + (x2 − 2y) dy = 0

Solution This differential equation is exact because

∂M
∂y

=
∂
∂y

[2xy − 3x2] = 2x and 
∂N
∂x

=
∂
∂x

[x2 − 2y] = 2x.

The general solution, f (x, y) = C, is

f (x, y) = ∫ M(x, y) dx = ∫ (2xy − 3x2) dx = x2y − x3 + g( y).

In Section 15.1, you determined g( y) by integrating N(x, y) with respect to y and  
reconciling the two expressions for f (x, y). An alternative method is to partially  
differentiate this version of f (x, y) with respect to y and compare the result with N(x, y). 
In other words,
 N(x, y)

fy(x, y) = ∂
∂y

[x2y − x3 + g( y)] = x2 + g′(y) = x2 − 2y.

So, g′(y) = −2y, and it follows that g(y) = −y2 + C1. Therefore,

f (x, y) = x2y − x3 − y2 + C1

and the general solution is x2y − x3 − y2 = C. 

g′(y) = −2y
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1132 Chapter 16 Additional Topics in Differential Equations

 Solving an Exact Differential Equation

Find the particular solution of (cos x − x sin x + y2) dx + 2xy dy = 0 that satisfies the 
initial condition y = 1 when x = π.

Solution The differential equation is exact because

 ∂M
∂y

 ∂N
∂x

∂
∂y

[cos x − x sin x + y2] = 2y =
∂
∂x

[2xy].

Because N(x, y) is simpler than M(x, y), it is better to begin by integrating N(x, y).

f (x, y) = ∫ N(x, y) dy = ∫ 2xy dy = xy2 + g(x)

Next, find fx(x, y) and compare the result with M(x, y).

 M(x, y)

fx(x, y) = ∂
∂x

[xy2 + g(x)] = y2 + g′(x) = cos x − x sin x + y2

So, g′(x) = cos x − x sin x and it follows that 

 g(x) = ∫ (cos x − x sin x) dx

 = x cos x + C1.

This implies that f (x, y) = xy2 + x cos x + C1, and the general solution is

xy2 + x cos x = C. General solution

Applying the given initial condition produces

π(1)2 + π cos π = C

which implies that C = 0. So, the particular  
solution is

xy2 + x cos x = 0. 

x

y

2

4

−2

−4

π 2π 3π−3π −2π −π

(  , 1)π

Figure 16.2 

The graph of the particular solution is  
shown in Figure 16.2. Notice that the graph 
consists of two parts: the ovals are given  
by y2 + cos x = 0, and the y-axis is given  
by x = 0.

In Example 3, note that for z = f (x, y) = xy2 + x cos x, the total differential of z 
is given by

 dz = fx(x, y) dx + fy(x, y) dy

 = (cos x − x sin x + y2) dx + 2xy dy

 = M(x, y) dx + N(x, y) dy.

In other words, M dx + N dy = 0 is called an exact differential equation because 
M dx + N dy is exactly the differential of f (x, y).

TECHNOLOGY A graphing 
utility can be used to graph a  
particular solution that satisfies 
the initial condition of a  
differential equation. In 
Example 3, the differential 
equation and initial condition 
are satisfied when 
xy2 + x cos x = 0, which 
implies that the particular  
solution can be written as  
x = 0 or y = ±√−cos x.  
On a graphing utility screen,  
the solution would be 
represented by Figure 16.1 
together with the y-axis.

−4

−4 4

4

π π

Figure 16.1

g′(x) = cos x − x sin x
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 16.1 Exact First-Order Equations 1133

Integrating Factors
When the differential equation M(x, y) dx + N(x, y) dy = 0 is not exact, it may be  
possible to make it exact by multiplying by an appropriate factor u(x, y), which is called 
an integrating factor for the differential equation.

 Multiplying by an Integrating Factor

a. When the differential equation

2y dx + x dy = 0 Not an exact equation

 is multiplied by the integrating factor u(x, y) = x, the resulting equation

2xy dx + x2 dy = 0 Exact equation

 is exact—the left side is the total differential of x2y.

b. When the equation

y dx − x dy = 0 Not an exact equation

 is multiplied by the integrating factor u(x, y) = 1�y2, the resulting equation

1
y
 dx −

x
y2 dy = 0 Exact equation

 is exact—the left side is the total differential of x�y. 

Finding an integrating factor can be difficult. There are two classes of differential 
equations, however, whose integrating factors can be found routinely—namely, those 
that possess integrating factors that are functions of either x alone or y alone. The next 
theorem, which is presented without proof, outlines a procedure for finding these two 
special categories of integrating factors.

THEOREM 16.2 Integrating Factors

Consider the differential equation M(x, y) dx + N(x, y) dy = 0.

1. If

1
N(x, y) [My(x, y) − Nx(x, y)] = h(x)

 is a function of x alone, then e∫h(x) dx is an integrating factor.

2. If

1
M(x, y) [Nx(x, y) − My(x, y)] = k(y)

 is a function of y alone, then e∫k( y) dy is an integrating factor.

Exploration
In Chapter 6, you solved the first-order linear differential equation

dy
dx

+ P(x)y = Q(x)

by using the integrating factor u(x) = e∫P(x) dx. Show that you can obtain this 
integrating factor by using the methods of this section.

REMARK When either  
h(x) or k(y) is constant, 
Theorem 16.2 still applies.  
As an aid to remembering  
these formulas, note that the 
subtracted partial derivative 
identifies both the denominator 
and the variable for the  
integrating factor.
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1134 Chapter 16 Additional Topics in Differential Equations

 Finding an Integrating Factor

Solve the differential equation (y2 − x) dx + 2y dy = 0.

Solution This equation is not exact because

My(x, y) = 2y and Nx(x, y) = 0.

However, because

My(x, y) − Nx(x, y)
N(x, y) =

2y − 0
2y

= 1 = h(x)

it follows that e∫h(x) dx = e∫ dx = ex is an integrating factor. Multiplying the differential 
equation by ex produces the exact differential equation

(y2ex − xex) dx + 2yex dy = 0.

Next, integrate N(x, y), as shown.

f (x, y) = ∫ N(x, y) dy = ∫ 2yex dy = y2ex + g(x)

Now, find fx(x, y) and compare the result with M(x, y).

 M(x, y)

fx(x, y) = y2ex + g′(x) = y2ex − xex

Therefore, g′(x) = −xex and g(x) = −xex + ex + C1, which implies that 

f (x, y) = y2ex − xex + ex + C1.

The general solution is y2ex − xex + ex = C, or

y2 − x + 1 = Ce−x. General solution 

The next example shows how a differential equation can help in sketching a force 
field given by F(x, y) = M(x, y)i + N(x, y)j.

 An Application to Force Fields

Sketch the force field 

F(x, y) = 2y

√x2 + y2
i −

y2 − x

√x2 + y2
j

by finding and sketching the family of curves tangent to F.

Solution At the point (x, y) in the plane, the vector F(x, y) has a slope of

dy
dx

=
−(y2 − x)�√x2 + y2

2y�√x2 + y2
=

−(y2 − x)
2y

which, in differential form, is

 2y dy = −(y2 − x) dx

 (y2 − x) dx + 2y dy = 0.

From Example 5, you know that the general solution of this differential equation is 
y2 = x − 1 + Ce−x. Figure 16.3 shows several representative curves from this family. 
Note that the force vector at (x, y) is tangent to the curve passing through (x, y). 

g′(x) = −xex

3

 

2

−1−3

−2

−3

y

x

F(x, y) = i −

Force �eld:

y2 = x − 1 + Ce−x

Family of curves tangent to F:

2y

x2 + y2
j

y2 − x

x2 + y2

Figure 16.3
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 16.1 Exact First-Order Equations 1135

16.1 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Exactness What does it mean for the differential  

equation M(x, y) dx + N(x, y) dy = 0 to be exact? Explain 
how to determine whether this differential equation is exact.

2.  Integrating Factor When is it beneficial to use an 
integrating factor to find the solution of the differential 
equation M(x, y) dx + N(x, y) dy = 0?

 Testing for Exactness In Exercises 3–6, 
determine whether the differential equation is exact. 

 3. (2x + xy2) dx + (3 + x2y) dy = 0

 4. (2xy − y) dx + (x2 − xy) dy = 0

 5. x sin y dx + x cos y dy = 0  6. yexy dx + xexy dy = 0

 Solving an Exact Differential Equation In 
Exercises 7–14, verify that the differential  
equation is exact. Then find the general solution.

 7. (2x − 3y) dx + (2y − 3x) dy = 0

 8. yex dx + ex dy = 0

 9. (3y2 + 10xy2) dx + (6xy − 2 + 10x2y) dy = 0

10. 2 cos(2x − y) dx − cos(2x − y) dy = 0

11. 
1

x2 + y2 (x dy − y dx) = 0 12. e−(x2+y2)(x dx + y dy) = 0

13. 
x
y2 dx −

x2

y3 dy = 0

14. (ey cos xy)[y dx + (x + tan xy) dy] = 0

Graphical and Analytic Analysis In Exercises 15 and 16, 
(a) sketch an approximate solution of the differential equation 
satisfying the initial condition on the slope field, (b) find the 
particular solution that satisfies the initial condition, and 
(c) use a graphing utility to graph the particular solution. 
Compare the graph with the sketch in part (a).

 Differential Equation Initial Condition

15. (2x tan y + 5) dx + (x2 sec2 y) dy = 0 y(12) =
π
4

16. 
1

√x2 + y2
(x dx + y dy) = 0 y(4) = 3

 

x
−4 −2 2 4

−4

−2

4

2

y   

x
−4 −2 2 4

−4

−2

2

4

y

 Figure for 15 Figure for 16

 Finding a Particular Solution In Exercises 
17–22, find the particular solution of the differential 
equation that satisfies the initial condition.

17. (2xy − 9x2) dx + (2y + x2 + 1) dy = 0, y(0) = −3

18. (2xy2 + 4) dx + (2x2y − 6) dy = 0, y(−1) = 8

19. e3x(sin 3y dx + cos 3y dy) = 0, y(0) = π

20. (x2 + y2) dx + 2xy dy = 0, y(3) = 1

21. 
y

x − 1
 dx + [ln(x − 1) + 2y] dy = 0, y(2) = 4

22. 
1

x2 + y2 (x dx + y dy) = 0, y(0) = 4

 Finding an Integrating Factor In Exercises 
23–32, find the integrating factor that is a function 
of x or y alone and use it to find the general 
solution of the differential equation.

23. y2 dx + 5xy dy = 0

24. (2x3 + y) dx − x dy = 0

25. y dx − (x + 6y2) dy = 0

26. (5x2 − y2) dx + 2y dy = 0

27. (x + y) dx + tan x dy = 0

28. (2x2y − 1) dx + x3 dy = 0

29. y2 dx + (xy − 1) dy = 0

30. (x2 + 2x + y) dx + 2 dy = 0

31. 2y dx + (x − sin√y) dy = 0

32. (−2y3 + 1) dx + (3xy2 + x3) dy = 0

Using an Integrating Factor In Exercises 33–36, use the 
integrating factor to find the general solution of the differential 
equation.

 Integrating Factor Differential Equation

33. u(x, y) = xy2 (4x2y + 2y2) dx + (3x3 + 4xy) dy = 0

34. u(x, y) = x2y (3y2 + 5x2y) dx + (3xy + 2x3) dy = 0

35. u(x, y) = x−2y−3 (−y5 + x2y) dx + (2xy4 − 2x3) dy = 0

36. u(x, y) = x−2y−2 −y3 dx + (xy2 − x2) dy = 0

37.  Integrating Factor Show that each expression is an  
integrating factor for the differential equation y dx − x dy = 0.

 (a) 
1
x2   (b) 

1
y2   (c) 

1
xy

   (d) 
1

x2 + y2

38.  Integrating Factor Show that the differential equation 
(axy2 + by) dx + (bx2y + ax) dy = 0 is exact only when 
a = b. For a ≠ b, show that xmyn is an integrating factor, 
where

 m = −
2b + a
a + b

, n = −
2a + b
a + b

.
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1136 Chapter 16 Additional Topics in Differential Equations

 Tangent Curves In Exercises 39–42, use a 
graphing utility to graph the family of curves  
tangent to the force field.

39. F(x, y) = y

√x2 + y2
i −

x

√x2 + y2
j

40. F(x, y) = x

√x2 + y2
i −

y

√x2 + y2
j

41. F(x, y) = 4x2yi − (2xy2 +
x
y2) j

42. F(x, y) = (1 + x2) i − 2xy j

Finding an Equation of a Curve In Exercises 43 and 44, 
find an equation of the curve with the specified slope passing 
through the given point.

 Slope Point

43. 
dy
dx

=
y − x
3y − x

 (2, 1)

44. 
dy
dx

=
−2xy

x2 + y2 (−1, 1)

 46.  HOW DO YOU SEE IT? The graph shows 
several representative curves from the family of 
curves tangent to a force field F. Which is the 
equation of the force field? Explain your reasoning.

1086

2

4

y

x

(a) F(x, y) = −i + 2j   (b) F(x, y) = −3xi + yj

(c) F(x, y) = exi − j (d) F(x, y) = 2i + e−yj

Euler’s Method In Exercises 47 and 48, (a) use Euler’s 
Method and a graphing utility to graph the particular solution 
of the differential equation over the indicated interval with the 
specified value of h and initial condition, (b) find the particular 
solution of the differential equation analytically, and (c) use a 
graphing utility to graph the particular solution and compare 
the result with the graph in part (a).

  Differential   Initial 
Equation Interval h Condition

47. y′ =
−xy

x2 + y2 [2, 4] 0.05 y(2) = 1

48. y′ =
6x + y2

y(3y − 2x) [0, 5] 0.2 y(0) = 1

49.  Euler’s Method Repeat Exercise 47 for h = 1 and  
discuss how the accuracy of the result changes.

50.  Euler’s Method Repeat Exercise 48 for h = 0.5 and  
discuss how the accuracy of the result changes.

EXPLORING CONCEPTS
Exact Differential Equation In Exercises 51 and 
52, find all values of k such that the differential equation 
is exact.

51. (xy2 + kx2y + x3) dx + (x3 + x2y + y2) dy = 0

52. (ye2xy + 2x) dx + (kxe2xy − 2y) dy = 0

53.  Exact Differential Equation Find all nonzero 
functions f  and g such that

 g(y) sin x dx + y2 f (x) dy = 0

 is exact.

54.  Exact Differential Equation Find all nonzero 
functions g such that

 g(y)ey dx + xy dy = 0

 is exact.

True or False? In Exercises 55–58, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

55. Every separable equation is an exact equation.

56. Every exact equation is a separable equation.

57.  If M dx + N dy = 0 is exact, then

 [ f (x) + M] dx + [g(y) + N] dy = 0

 is also exact.

58.  If M dx + N dy = 0 is exact, then

 xM dx + xN dy = 0

 is also exact.

 In a manufacturing process where y = C(x) represents the 
cost of producing x units, the elasticity of cost is defined as

E(x) = marginal cost
average cost

=
C′(x)

C(x)�x
=

x
y
 
dy
dx

.

Find the cost function  
when the elasticity  
function is

E(x) = 20x − y
2y − 10x

where

C(100) = 500

and x ≥ 100.

45. Cost
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 16.2 Second-Order Homogeneous Linear Equations 1137

16.2 Second-Order Homogeneous Linear Equations

 Solve a second-order linear differential equation.
 Solve a higher-order linear differential equation.
 Use a second-order linear differential equation to solve an applied problem.

Second-Order Linear Differential Equations
In this section and the next section, you will learn methods for solving higher-order linear 
differential equations.

Definition of Linear Differential Equation of Order n
Let g1, g2, .  .  . , gn and f  be functions of x with a common (interval) domain. 
An equation of the form

y(n) + g1(x)y(n−1) + g2(x)y(n−2) + .  .  . + gn−1(x)y′ + gn(x)y = f (x)

is a linear differential equation of order n. If f (x) = 0, then the equation 
is homogeneous; otherwise, it is nonhomogeneous.

Homogeneous equations are discussed in this section, and the nonhomogeneous 
case is discussed in the next section.

The functions y1, y2, .  .  . , yn are linearly independent when the only solution of 
the equation

C1y1 + C2y2 + .  .  . + Cnyn = 0

is the trivial one, C1 = C2 = .  .  . = Cn = 0. Otherwise, this set of functions is  
linearly dependent.

 Linearly Independent and Dependent Functions

Determine whether the functions are linearly independent or linearly dependent.

a. y1(x) = sin x, y2(x) = x b. y1(x) = x, y2(x) = 3x

Solution

a.  The functions y1(x) = sin x and y2(x) = x are linearly independent because the only 
values of C1 and C2 for which

C1 sin x + C2x = 0

 for all x are C1 = 0 and C2 = 0.

b.  It can be shown that two functions form a linearly dependent set if and only if one is 
a constant multiple of the other. For example, y1(x) = x and y2(x) = 3x are linearly 
dependent because

C1x + C2(3x) = 0

 has the nonzero solutions C1 = −3 and C2 = 1. 

The theorem on the next page points out the importance of linear independence 
in constructing the general solution of a second-order linear homogeneous differential 
equation with constant coefficients.

REMARK  Notice that this use 
of the term homogeneous differs 
from that in Section 6.3.

CYAN    MAGENTA    YELLOW   BLACK

Larson Texts, Inc. • Multivariable Calculus 11e • CALC11-WFH

97
81

33
72

75
37

8_
16

02
 

09
/1

3/
16

 
 F

in
al

 P
ag

es

© C
en

ga
ge

 Le
arn

ing
.  N

ot 
for

 di
str

ibu
tio

n.



1138 Chapter 16 Additional Topics in Differential Equations

THEOREM 16.3 Linear Combinations of Solutions

If y1 and y2 are linearly independent solutions of the differential equation 
y″ + ay′ + by = 0, then the general solution is

y = C1y1 + C2y2 General solution

where C1 and C2 are constants.

Proof Letting y1 and y2 be solutions of y″ + ay′ + by = 0, you obtain the following 
system of equations.

 y1″(x) + ay1′(x) + by1(x) = 0

 y2″(x) + ay2′(x) + by2(x) = 0

Multiplying the first equation by C1, multiplying the second by C2, and adding the 
resulting equations together, you obtain

[C1y1″(x) + C2y2″(x)] + a[C1y1′(x) + C2y2′(x)] + b[C1y1(x) + C2y2(x)] = 0

which means that y = C1y1 + C2y2 is a solution, as desired. The proof that all solutions 
are of this form is best left to a full course on differential equations. 

Theorem 16.3 states that when you can find two linearly independent solutions, 
you can obtain the general solution by forming a linear combination of the two solutions.

To find two linearly independent solutions, note that the nature of the equation  
y″ + ay′ + by = 0 suggests that it may have solutions of the form y = emx. If so, then

y′ = memx and y″ = m2emx. 

So, by substitution, y = emx is a solution if and only if 

 y″ + ay′ + by = 0

 m2emx + amemx + bemx = 0

 emx(m2 + am + b) = 0.

Because emx is never 0, y = emx is a solution if and only if

m2 + am + b = 0.    Characteristic equation

This is the characteristic equation of the differential equation y″ + ay′ + by = 0. 
Note that the characteristic equation can be determined from its differential equation 
simply by replacing y″ with m2, y′ with m, and y with 1.

 Characteristic Equation: Distinct Real Zeros

Solve the differential equation y″ − 4y = 0.

Solution In this case, the characteristic equation is

m2 − 4 = 0. Characteristic equation

So, m = ±2. Therefore, y1 = em1x = e2x and y2 = em2x = e−2x are particular solutions 
of the differential equation. Furthermore, because these two solutions are linearly  
independent, you can apply Theorem 16.3 to conclude that the general solution is

y = C1e
2x + C2e

−2x. General solution 

Exploration
For each differential  
equation below, find the 
characteristic equation. 
Solve the characteristic 
equation for m, and use the 
values of m to find a general 
solution of the differential 
equation. Using your results, 
develop a general solution of 
differential equations with 
characteristic equations that 
have distinct real roots.

(a) y″ − 9y = 0

(b) y″ − 6y′ + 8y = 0
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 16.2 Second-Order Homogeneous Linear Equations 1139

The characteristic equation in Example 2 has two distinct real zeros. From 
algebra, you know that this is only one of three possibilities for quadratic equations. In 
general, the quadratic equation m2 + am + b = 0 has zeros

m1 =
−a + √a2 − 4b

2
 and m2 =

−a − √a2 − 4b
2

which fall into one of three cases.

1. Two distinct real zeros, m1 ≠ m2

2. Two equal real zeros, m1 = m2

3. Two complex conjugate zeros, m1 = α + βi and m2 = α − βi

In terms of the differential equation y″ + ay′ + by = 0, these three cases correspond 
to three different types of general solutions.

THEOREM 16.4 Solutions of y ″ + ay′ + by = 0

The solutions of y″ + ay′ + by = 0 fall into one of three cases, depending on 
the solutions of the characteristic equation, m2 + am + b = 0.

1.  Distinct Real Zeros If m1 ≠ m2 are distinct real zeros of the characteristic 
equation, then the general solution is

y = C1e
m1x + C2e

m2x.

2.  Equal Real Zeros If m1 = m2 are equal real zeros of the characteristic 
equation, then the general solution is

y = C1e
m1x + C2xem1x = (C1 + C2x)em1x.

3.  Complex Zeros If m1 = α + βi and m2 = α − βi are complex zeros of  
the characteristic equation, then the general solution is

y = C1e
αx cos βx + C2e

αx sin βx.

 Characteristic Equation: Complex Zeros

Find the general solution of the differential equation y″ + 6y′ + 12y = 0.

Solution The characteristic equation m2 + 6m + 12 = 0 has two complex zeros, 
as follows.

 m =
−6 ± √36 − 48

2
 Use Quadratic Formula with a = 1, b = 6, and c = 12.

 =
−6 ± √−12

2

 =
−6 ± 2√−3

2

 = −3 ± √−3

 = −3 ± √3 i

So, α = −3 and β = √3, and the general solution is

y = C1e
−3x cos √3x + C2e

−3x sin √3x.

Several members of the family of solutions, including f (x) = e−3x cos √3x and 
g(x) = e−3x sin √3x, are shown in Figure 16.4. (Note that although the characteristic 
equation has two complex zeros, the solution of the differential equation is real.) 

 FOR FURTHER INFORMATION
For more information on  
Theorem 16.4, see the article  
“A Note on a Differential 
Equation” by Russell Euler in the 
1989 winter issue of the Missouri 
Journal of Mathematical Sciences.

x
1 432

3
f

g
f + g

g − f

y

Several members of the family of  
solutions to Example 3, including 
f (x) = e−3x cos √3x and 
g(x) = e−3x sin √3x, are shown in  
the graph. Notice that as x→∞, all 
of these solutions approach 0.
Figure 16.4
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1140 Chapter 16 Additional Topics in Differential Equations

 Characteristic Equation: Repeated Zeros

Solve the differential equation 

y″ + 4y′ + 4y = 0

subject to the initial conditions y(0) = 2 and y′(0) = 1.

Solution The characteristic equation and its zeros are

 m2 + 4m + 4 = 0

 (m + 2)2 = 0

 m = −2.

So, the characteristic equation has two equal zeros given by m = −2, and the general 
solution is

y = C1e
−2x + C2xe−2x. General solution

Now, because y = 2 when x = 0, you have

 2 = C1(1) + C2(0)(1)
 2 = C1.

Furthermore, because y′ = 1 when x = 0, you have

 y′ = −2C1e
−2x + C2(−2xe−2x + e−2x) Derivative of y with respect to x

 1 = −2(2)(1) + C2[−2(0)(1) + 1]  Substitute.

 1 = −4 + C2

 5 = C2.

Therefore, the particular solution is

y = 2e−2x + 5xe−2x. Particular solution

Try checking this solution in the original differential equation. 

Higher-Order Linear Differential Equations
For higher-order homogeneous linear differential equations, you can find the general 
solution in much the same way as you do for second-order equations. That is, you begin 
by determining the n zeros of the characteristic equation. Then, based on these n zeros, 
you form a linearly independent collection of n solutions. The major difference is that 
with equations of third or higher order, zeros of the characteristic equation may occur 
more than twice. When this happens, the linearly independent solutions are formed by 
multiplying by increasing powers of x, as demonstrated in Examples 6 and 7.

 Solving a Third-Order Equation

Find the general solution of

y′″ − y′ = 0.

Solution The characteristic equation and its zeros are

 m3 − m = 0

 m(m − 1)(m + 1) = 0

 m = 0, 1, −1.

Because the characteristic equation has three distinct zeros, the general solution is

y = C1 + C2e
−x + C3e

x. General solution
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 16.2 Second-Order Homogeneous Linear Equations 1141

 Solving a Third-Order Equation

Find the general solution of

y′″ + 3y″ + 3y′ + y = 0.

Solution The characteristic equation and its zeros are

 m3 + 3m2 + 3m + 1 = 0

 (m + 1)3 = 0

 m = −1.

Because the zero m = −1 occurs three times, the general solution is

y = C1e
−x + C2xe−x + C3x

2e−x. General solution

 Solving a Fourth-Order Equation

See LarsonCalculus.com for an interactive version of this type of example.

Find the general solution of

y(4) + 2y″ + y = 0.

Solution The characteristic equation and its zeros are

 m4 + 2m2 + 1 = 0

 (m2 + 1)2 = 0

 m = ±i.

Because each of the zeros

m1 = α + βi = 0 + i and m2 = α − βi = 0 − i

occurs twice, the general solution is

y = C1 cos x + C2 sin x + C3x cos x + C4x sin x. General solution 

Application
One of the many applications of linear differential equations is describing the motion of 
an oscillating spring. According to Hooke’s Law, a spring that is stretched (or compressed) 
y units from its natural length L tends to restore itself to its natural length by a force 
F that is proportional to y. That is, F(y) = −ky, where k is the spring constant and 
indicates the stiffness of the spring.

A rigid object of mass m is attached to the end of a spring and causes a displacement, 
as shown in Figure 16.5. Assume that the mass of the spring is negligible compared 
with m. When the object is pulled downward and released, the  resulting oscillations 
are a product of two opposing forces—the spring force F(y) = −ky and the weight 
mg of the object. Under such conditions, you can use a differential equation to find the  
position y of the object as a function of time t. According to Newton’s Second Law of 
Motion, the force acting on the weight is F = ma, where a = d2y�dt2 is the acceleration. 
Assuming that the motion is undamped—that is, there are no other external forces  
acting on the object—it follows that

m
d2y
dt2 = −ky

and you have

d2y
dt2 +

k
m

y = 0. Undamped motion of a spring

m

L = natural
length

y = displacement

A rigid object of mass m attached to 
the end of the spring causes a  
displacement of y.
Figure 16.5
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1142 Chapter 16 Additional Topics in Differential Equations

 Undamped Motion of a Spring

A 4-pound weight stretches a spring 8 inches from its natural length. The weight is 
pulled downward an additional 6 inches and released with an initial upward velocity of 
8 feet per second. Find a formula for the position of the weight as a function of time t.

Solution The 4-pound weight stretches the spring 8 inches = 2
3 foot from its natural 

length, so by Hooke’s Law

4 = k(23)  k = 6.

Moreover, because the weight w is given by mg, it follows that

m =
w
g
=

4
32

=
1
8

.

So, the resulting differential equation for this undamped motion is

d2y
dt2 + ( 6

1�8)y = 0  
d2y
dt2 + 48y = 0.

The characteristic equation m2 + 48 = 0 has complex zeros m = 0 ± 4√3 i, so the 
general solution is

 y = C1e
0 cos 4√3 t + C2e

0 sin 4√3 t

 = C1 cos 4√3 t + C2 sin 4√3 t.

When t = 0 seconds, y = 6 inches = 1
2 foot. Using this initial condition, you have

1
2
= C1(1) + C2(0)  C1 =

1
2

. y(0) = 1
2

To determine C2, note that y′ = 8 feet per second when t = 0 seconds.

 y′ = −4√3C1 sin 4√3 t + 4√3C2 cos 4√3 t Derivative of y with respect to t

 8 = −4√3(12)(0) + 4√3C2(1)  Substitute.

 
2√3

3
= C2

Consequently, the position at time t is given by

y =
1
2

 cos 4√3 t +
2√3

3
 sin 4√3 t. 

The object in Figure 16.6 undergoes an additional damping or frictional force that 
is proportional to its velocity. A case in point would be the damping force resulting 
from friction and movement through a fluid. Considering this damping force

−p 
dy
dt

 Damping force

the differential equation for the oscillation is

m 
d2y
dt2 = −ky − p 

dy
dt

or, in standard linear form,

d2y
dt2 +

p
m (

dy
dt) +

k
m

y = 0. Damped motion of a spring

A common type of spring is a 
coil spring, also called a helical 
spring because the shape of the 
spring is a helix. A tension coil 
spring resists being stretched 
(see photo above and Example 8). 
A compression coil spring resists 
being compressed, such as the 
spring in a car suspension.

A damped vibration could be caused by 
friction and movement through a liquid.
Figure 16.6
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 16.2 Second-Order Homogeneous Linear Equations 1143

16.2 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Linear Differential Equation Determine the order 

of each linear differential equation and decide whether 
each equation is homogeneous.

 (a) y(5) + x6y′ + xy = 0 (b) y ″ + 3exy + 2x = 0

2.  Linearly Independent Describe what it means for 
the functions y1 and y2 to be linearly independent.

3.  Using Zeros The zeros of the characteristic 
equation for two differential equations of the form 
y ″ + ay′ + by = 0 are given. Write the corresponding 
general solution for each set of zeros.

 (a) m = −1, 3 (b) m = 2, 2

4.  Finding a General Solution Explain how to find 
the general solution of a higher-order homogenous linear 
differential equation.

 Verifying a Solution In Exercises 5–8, verify 
the solution of the differential equation. Then use 
a graphing utility to graph the particular solutions 
for several different values of C1 and C2. 

 Solution Differential Equation

 5. y = (C1 + C2x)e−3x y″ + 6y′ + 9y = 0

 6. y = C1 + C2e
3x y″ − 3y′ = 0

 7. y = C1 cos 2x + C2 sin 2x y″ + 4y = 0

 8. y = C1e
−x cos 3x + C2e

−x sin 3x y″ + 2y′ + 10y = 0

 Finding a General Solution In Exercises 
9–36, find the general solution of the linear 
differential equation.

 9. y″ − y′ = 0  10. y″ + 2y′ = 0

11. y″ − y′ − 6y = 0  12. y″ + 6y′ + 5y = 0

13. 2y″ + 3y′ − 2y = 0  14. 16y ″ − 16y′ + 3y = 0

15. y″ + 6y′ + 9y = 0  16. y ″ − 10y′ + 25y = 0

17. 16y″ − 8y′ + y = 0  18. 9y″ − 12y′ + 4y = 0

19. y″ + y = 0  20. y″ + 4y = 0

21. 4y″ − 5y = 0  22. y″ − 2y = 0

23. y″ − 2y′ + 4y = 0  24. y″ − 4y′ + 21y = 0

25. y″ − 3y′ + y = 0  26. 3y″ + 4y′ − y = 0

27. 9y″ − 12y′ + 11y = 0  28. 2y″ − 6y′ + 7y = 0

29. y(4) − y = 0  30. y(4) − y″ = 0

31. y′″ − 6y″ + 11y′ − 6y = 0  32. y′″ − y″ − y′ + y = 0

33. y′″ − 3y ″ + 7y′ − 5y = 0

34. y′″ − 3y″ + 3y′ − y = 0

35. y(4) − 2y″ + y = 0

36. y(4) − 2y′″ + y″ = 0

37.  Finding a Particular Solution Consider the  
differential equation y″ + 100y = 0 and the solution 
y = C1 cos 10x + C2 sin 10x. Find the particular solution 
satisfying each initial condition.

 (a) y(0) = 2, y′(0) = 0   (b) y(0) = 0, y′(0) = 2

 (c) y(0) = −1, y′(0) = 3

38.  Finding a Particular Solution Determine C and ω such 
that y = C sin √3 t is a particular solution of the differential 
equation y ″ + ωy = 0, where y′(0) = −5.

 Finding a Particular Solution: Initial 
Conditions In Exercises 39–44, find the 
particular solution of the linear differential  
equation that satisfies the initial conditions.

39. y″ − y′ − 30y = 0 40. y″ − 7y′ + 12y = 0

 y(0) = 1, y′(0) = −4  y(0) = 3, y′(0) = 3

41. y″ + 16y = 0 42. 9y″ − 6y′ + y = 0

 y(0) = 0, y′(0) = 2  y(0) = 2, y′(0) = 1

43. y″ + 2y′ + 3y = 0 44. 4y″ + 4y′ + y = 0

 y(0) = 2, y′(0) = 1  y(0) = 3, y′(0) = −1

Finding a Particular Solution: Boundary Conditions 
In Exercises 45–50, find the particular solution of the linear  
differential equation that satisfies the boundary conditions. 

45. y ″ − 4y′ + 3y = 0

 y(0) = 1, y(1) = 3

46. 4y″ + y = 0

 y(0) = 2, y(π) = −5

47. y″ + 9y = 0

 y(0) = 3, y(π2) = 4

48. 4y″ + 20y′ + 21y = 0

 y(0) = 3, y(2) = 0

49. 4y″ − 28y′ + 49y = 0

 y(0) = 2, y(1) = −1

50. y″ + 6y′ + 45y = 0

 y(0) = 4, y( π12) = 2

EXPLORING CONCEPTS
51.  Finding Another Solution Show that the equation 

y = C1 sinh x + C2 cosh x is a solution of the  
homogeneous linear differential equation y″ − y = 0. 
Then use hyperbolic definitions to find another solution 
of the differential equation.

52.  General Solution of a Differential Equation 
What is the general solution of y(n) = 0? Explain.
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1144 Chapter 16 Additional Topics in Differential Equations

 54.  HOW DO YOU SEE IT? Give a geometric 
argument to explain why the graph cannot be 
a solution of the differential equation. (It is not 
necessary to solve the differential equation.)

(a) y″ = y′ (b) y″ = −1
2y′

 

−3 −2 −1 1 2 3

1

3

y

2

5

4

x

y  

−3 −2 21 3

1

3

2

x

y

y

−3

Motion of a Spring In Exercises 55–58, match the  
differential equation with the graph of a particular solution. 
[The graphs are labeled (a), (b), (c), and (d).] The correct match 
can be made by comparing the frequency of the oscillations 
 or the rate at which the oscillations are being damped with the 
appropriate coefficient in the differential equation.

(a) 

5 6

3

421
x

y  (b) 

6

3

42 31
x

y

(c) 

5 642 3

3

x

y  (d) 

61

3

−3

x

y

55. y″ + 9y = 0

56. y″ + 25y = 0

57. y ″ + 2y′ + 10y = 0

58. y″ + y′ + 37
4 y = 0

Motion of a Spring In Exercises 59–64, a
   32-pound weight stretches a spring 2

3 foot from its 
natural length. Use the given information to find a 
formula for the position of the weight as a function 
of time.

59.  The weight is pulled 12 foot below equilibrium and released.

60.  The weight is raised 23 foot above equilibrium and released.

61.  The weight is raised 2
3 foot above equilibrium and released 

with an initial downward velocity of 12 foot per second.

62.  The weight is pulled 1
2 foot below equilibrium and released 

with an initial upward velocity of 12 foot per second.

63.  The weight is pulled 1
2 foot below equilibrium and released. 

The motion takes place in a medium that furnishes a damping 
force of magnitude 18∣v∣ at all times.

64.  The weight is pulled 1
2 foot below equilibrium and released. 

The motion takes place in a medium that furnishes a damping 
force of magnitude 14∣v∣ at all times.

65.  Real Zeros The characteristic equation of the differential 
equation y ″ + ay′ + by = 0 has two equal real zeros given by 
m = r. Show that y = C1e

rx + C2xerx is a solution.

66.  Complex Zeros The characteristic equation of the  
differential equation

 y″ + ay′ + by = 0

  has complex zeros given by m1 = α + βi and m2 = α − βi. 
Show that y = C1e

αx cos βx + C2e
ax sin βx is a solution.

True or False? In Exercises 67–70, determine whether the 
statement is true or false. If it is false, explain why or give an 
example that shows it is false.

67.  y1 = ex and y2 = 3ex are linearly dependent.

68. y1 = x and y2 = x2 are linearly dependent.

69.  y = x is a solution of

 an y(n) + an−1y(n−1) + .  .  . + a1y′ + a0 y = 0

 if and only if a1 = a0 = 0.

70.  It is possible to choose a and b such that y = x2ex is a solution 
of y″ + ay′ + by = 0.

Wronskian The Wronskian of two differentiable functions 
f  and g, denoted by W( f, g), is defined as the function given 
by the determinant

W( f, g) = ∣ f
f′

g
g′∣.

The functions f  and g are linearly independent when there 
exists at least one value of x for which W( f, g) ≠ 0. In Exercises 
71–74, use the Wronskian to verify that the two functions are 
linearly independent.

71. y1 = eax 72. y1 = eax

 y2 = ebx, a ≠ b  y2 = xeax

73. y1 = eax sin bx 74. y1 = x

 y2 = eax cos bx, b ≠ 0  y2 = x2

 Several shock absorbers 
are shown at the right. 
Do you think the  
motion of the spring  
in a shock absorber is 
undamped or damped?

53. Undamped or Damped Motion?
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 16.3 Second-Order Nonhomogeneous Linear Equations 1145

16.3  Second-Order Nonhomogeneous Linear Equations

  Recognize the general solution of a second-order nonhomogeneous  
linear differential equation.

  Use the method of undetermined coefficients to solve a second-order  
nonhomogeneous linear differential equation.

  Use the method of variation of parameters to solve a second-order  
nonhomogeneous linear differential equation.

Nonhomogeneous Equations
In the preceding section, damped oscillations of a spring were  represented by the  
homogeneous second-order linear equation

d2y
dt2 +

p
m (

dy
dt) +

k
m

y = 0. Free motion

This type of oscillation is called free because it is determined solely by the spring and 
gravity and is free of the action of other external forces. If such a system is also subject 
to an external periodic force, such as a sin bt, caused by vibrations at the opposite 
end of the spring, then the motion is called forced, and it is characterized by the  
nonhomogeneous equation

d2y
dt2 +

p
m (

dy
dt) +

k
m

y = a sin bt. Forced motion

In this section, you will study two methods for finding the general solution of a 
nonhomogeneous linear differential equation. In both methods, the first step is to find 
the general solution of the corresponding homogeneous equation.

y = yh General solution of homogeneous equation

Having done this, you try to find a particular solution of the nonhomogeneous equation.

y = yp Particular solution of nonhomogeneous equation

By combining these two results, you can conclude that the general solution of the  
nonhomogeneous equation is

y = yh + yp General solution of nonhomogeneous equation

as stated in the next theorem.

THEOREM 16.5 Solution of Nonhomogeneous Linear Equation

Let

y″ + ay′ + by = F(x)

be a second-order nonhomogeneous linear differential equation. If yp is a  
particular solution of this equation and yh is the general solution of the  
corresponding homogeneous equation, then

y = yh + yp

is the general solution of the nonhomogeneous equation.

SOPHIE GERMAIN 
(1776–1831)

Many of the early contributors 
to calculus were interested in 
forming mathematical models 
for vibrating strings and  
membranes, oscillating springs, 
and elasticity. One of these was 
the French mathematician 
Sophie Germain, who in 1816 
was awarded a prize by the 
French Academy for a paper 
entitled “Memoir on the 
Vibrations of Elastic Plates.”
See LarsonCalculus.com to read 
more of this biography.
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1146 Chapter 16 Additional Topics in Differential Equations

Method of Undetermined Coefficients
You already know how to find the solution yh of a linear homogeneous differential  
equation. The remainder of this section looks at ways to find the particular solution yp. 
When F(x) in

y″ + ay′ + by = F(x)

consists of sums or products of xn, emx, cos βx, or sin βx, you can find a particular solution 
yp by the method of undetermined coefficients. The object of this method is to guess 
that the solution yp is a generalized form of F(x). Here are some examples.

1. For F(x) = 3x2, choose yp = Ax2 + Bx + C.

2. For F(x) = 4xex, choose yp = Axex + Bex.

3. For F(x) = x + sin 2x, choose yp = (Ax + B) + C sin 2x + D cos 2x.

Then, by substitution, determine the coefficients for the generalized solution.

 Method of Undetermined Coefficients

Find the general solution of the equation y″ − 2y′ − 3y = 2 sin x.

Solution Note that the corresponding homogeneous equation is y″ − 2y′ − 3y = 0. 
To find the general solution yh, solve the characteristic equation as shown.

 m2 − 2m − 3 = 0

 (m + 1)(m − 3) = 0

 m = −1, 3

So, the general solution of the homogeneous equation is yh = C1e
−x + C2e

3x. Next, let 
yp be a generalized form of 2 sin x.

 yp = A cos x + B sin x

 yp′ = −A sin x + B cos x

 yp″ = −A cos x − B sin x

Substitution into the original differential equation yields

 y″ − 2y′ − 3y = 2 sin x

 −A cos x − B sin x − 2(−A sin x + B cos x) − 3(A cos x + B sin x) = 2 sin x

 −A cos x − B sin x + 2A sin x − 2B cos x − 3A cos x − 3B sin x = 2 sin x

 (−4A − 2B) cos x + (2A − 4B) sin x = 2 sin x.

By equating coefficients of like terms, you obtain the system of two equations

−4A − 2B = 0 and 2A − 4B = 2

with solutions

A =
1
5

 and B = −
2
5

.

Therefore, a particular solution of the original nonhomogeneous equation is

yp =
1
5

 cos x −
2
5

 sin x Particular solution of nonhomogeneous equation

and the general solution is

 y = yh + yp

 = C1e
−x + C2e

3x +
1
5

 cos x −
2
5

 sin x. General solution of nonhomogeneous equation
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 16.3 Second-Order Nonhomogeneous Linear Equations 1147

In Example 1, the form of the homogeneous solution yh = C1e
−x + C2e

3x has 
no overlap with the function F(x) in the equation y″ + ay′ + by = F(x). However,  
suppose the given differential equation in Example 1 were of the form

y″ − 2y′ − 3y = e−x.

Now it would make no sense to guess that the particular solution was

y = Ae−x

because in the equation y″ − 2y′ − 3y = e−x, this solution yields

Ae−x − 2(−Ae−x) − 3Ae−x = 0 ≠ e−x. y = Ae−x, y′ = −Ae−x, y″ = Ae−x

In such cases, you should alter your guess by multiplying by the lowest power of x that 
removes the duplication. For this particular problem, you would guess

yp = Axe−x.

Another case where you need to alter your guess for the particular solution yp is shown 
in the next example.

 Method of Undetermined Coefficients

Find the general solution of

y″ − 2y′ = x + 2ex.

Solution The corresponding homogeneous equation is y″ − 2y′ = 0, and the 
characteristic equation

 m2 − 2m = 0

 m(m − 2) = 0

has solutions m = 0 and m = 2. So,

yh = C1 + C2e
2x. General solution of homogeneous equation

Because F(x) = x + 2ex, your first choice for yp would be (A + Bx) + Cex. However, 
because yh already contains a constant term C1, you should multiply the polynomial 
part (A + Bx) by x and use

 yp = Ax + Bx2 + Cex

 yp′ = A + 2Bx + Cex

 yp″ = 2B + Cex.

Substitution into the original differential equation produces

 y″ − 2y′ = x + 2ex

 2B + Cex − 2(A + 2Bx + Cex) = x + 2ex

 (2B − 2A) − 4Bx − Cex = x + 2ex.

Equating coefficients of like terms yields the system of three equations

2B − 2A = 0, −4B = 1, and −C = 2

with solutions A = B = −1
4 and C = −2. Therefore,

yp = −
1
4

x −
1
4

x2 − 2ex Particular solution of nonhomogeneous equation

and the general solution is

 y = yh + yp

 = C1 + C2e
2x −

1
4

x −
1
4

x2 − 2ex. General solution of nonhomogeneous equation
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1148 Chapter 16 Additional Topics in Differential Equations

In Example 2, the polynomial part of the initial guess (A + Bx) + Cex for yp  
overlapped by a constant term with

yh = C1 + C2e
2x

and it was necessary to multiply the polynomial part by a power of x that removed the 
overlap. The next example further illustrates some choices for yp that eliminate overlap 
with yh. Remember that in all cases, the first guess for yp should match the types of 
functions occurring in F(x).

 Choosing the Form of the Particular Solution

Determine a suitable choice for yp for each differential equation, given its general  
solution of the homogeneous equation.

 y″ + ay′ + by = F(x) yh

a. y″ = x2 C1 + C2x

b. y″ + 2y′ + 10y = 4 sin 3x C1e
−x cos 3x + C2e

−x sin 3x

c. y″ − 4y′ + 4 = e2x C1e
2x + C2xe2x

Solution

a.  Because F(x) = x2, the normal choice for yp would be A + Bx + Cx2. However, 
because yh = C1 + C2x already contains a constant term and a linear term, you 
should multiply by x2 to obtain

yp = Ax2 + Bx3 + Cx4.

b.  Because F(x) = 4 sin 3x and each term in yh contains a factor of e−x, you can simply let

yp = A cos 3x + B sin 3x.

c.  Because F(x) = e2x, the normal choice for yp would be Ae2x. However, because 
yh = C1e

2x + C2xe2x already contains an e2x term and an xe2x term, you should 
multiply by x2 to get

yp = Ax2e2x.

 Solving a Third-Order Equation

See LarsonCalculus.com for an interactive version of this type of example.

Find the general solution of y′″ + 3y″ + 3y′ + y = x.

Solution From Example 6 in Section 16.2, you know that the homogeneous solution is

yh = C1e
−x + C2xe−x + C3x

2e−x.

Because F(x) = x, let yp = A + Bx and obtain yp′ = B and yp″ = 0. So, by substitution 
into the original differential equation, you have

 0 + 3(0) + 3(B) + A + Bx = x

 (3B + A) + Bx = x.

Equating coefficients of like terms yields the system of two equations

3B + A = 0 and B = 1.

So, B = 1 and A = −3, which implies that yp = −3 + x. Therefore, the general  
solution is

 y = yh + yp

 = C1e
−x + C2xe−x + C3x

2e−x − 3 + x. 97
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 16.3 Second-Order Nonhomogeneous Linear Equations 1149

Variation of Parameters
The method of undetermined coefficients works well when F(x) is made up of polynomials 
or functions whose successive derivatives have a cyclical pattern. For functions such as 
1�x and tan x, which do not have such characteristics, it is better to use a more general 
method called variation of parameters. In this method, you assume that yp has the 
same form as yh, except that the constants in yh are replaced by variables.

Variation of Parameters

To find the general solution of the equation y″ + ay′ + by = F(x), use these 
steps.

1. Find yh = C1y1 + C2y2.

2. Replace the constants by variables to form yp = u1y1 + u2y2.

3. Solve the following system for u1′ and u2′.

 u1′y1 + u2′y2 = 0

 u1′y1′ + u2′y2′ = F(x)

4. Integrate to find u1 and u2. The general solution is y = yh + yp. 

 Variation of Parameters

Solve the differential equation

y″ − 2y′ + y =
ex

2x
, x > 0.

Solution The characteristic equation

m2 − 2m + 1 = 0  (m − 1)2 = 0

has one repeated solution, m = 1. So, the homogeneous solution is

yh = C1y1 + C2y2 = C1e
x + C2xex.

Replacing C1 and C2 by u1 and u2 produces

yp = u1y1 + u2y2 = u1e
x + u2xex.

The resulting system of equations is

 u1′ex + u2′xex = 0

 u1′ex + u2′(xex + ex) = ex

2x
.

Subtracting the second equation from the first produces u2′ = 1�(2x). Then, by substitution 
in the first equation, you have u1′ = −1

2. Finally, integration yields

u1 = −∫ 
1
2

 dx = −
x
2

 and u2 =
1
2∫ 

1
x
 dx =

1
2

 ln x = ln √x.

From this result, it follows that a particular solution is

yp = −
1
2

xex + (ln √x)xex

and the general solution is

y = C1e
x + C2xex −

1
2

xex + xex ln √x.  
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1150 Chapter 16 Additional Topics in Differential Equations

Exploration
Notice in Example 5 that the constants of integration were not introduced 
when finding u1 and u2. Show that for

u1 = −
x
2
+ a1 and u2 = ln √x + a2

the general solution

y = yh + yp = C1e
x + C2e

x −
1
2

xex + xex ln √x

yields the same result as the solution obtained in the example.

 Variation of Parameters

Solve the differential equation y″ + y = tan x.

Solution Because the characteristic equation m2 + 1 = 0 has solutions m = ±i, the 
homogeneous solution is yh = C1 cos x + C2 sin x. Replacing C1 and C2 by u1 and u2 
produces yp = u1 cos x + u2 sin x. The resulting system of equations is

 u1′ cos x + u2′ sin x = 0

 −u1′ sin x + u2′ cos x = tan x.

Multiplying the first equation by sin x and the second by cos x produces

 u1′ sin x cos x + u2′ sin2 x = 0

 −u1′ sin x cos x + u2′ cos2 x = sin x.

Adding these two equations produces u2′ = sin x, which implies that

 u1′ sin x cos x + (sin x) sin2 x = 0

 u1′ sin x cos x = −sin3 x

 u1′ = −
sin2 x
cos x

 u1′ =
cos2 x − 1

cos x

 u1′ = cos x − sec x.

Integration yields

u1 = ∫ (cos x − sec x) dx = sin x − ln ∣sec x + tan x∣
and

u2 = ∫ sin x dx = −cos x

so that the particular solution is

 yp = sin x cos x − cos x ln ∣sec x + tan x∣ − sin x cos x

 = −cos x ln ∣sec x + tan x∣
and the general solution is

 y = yh + yp

 = C1 cos x + C2 sin x − cos x ln ∣sec x + tan x∣. 
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 16.3 Second-Order Nonhomogeneous Linear Equations 1151

16.3 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Writing What is the form of the general solution of a 

second-order nonhomogeneous linear differential equation?

2.  Choosing a Method Determine whether you would 
use the method of undetermined coefficients or the method 
of variation of parameters to find the general solution of 
each differential equation. Explain your reasoning. (Do 
not solve the equations.)

 (a) y″ + 3y′ + y = x2   (b) y″ + y = csc x

 (c) y′″ − 6y = 3x − e−2x

 Method of Undetermined Coefficients In 
Exercises 3–6, solve the differential equation by the 
method of undetermined coefficients.

 3. y″ + 7y′ + 12y = 3x + 1  4. y″ − y′ − 6y = 4

 5. y″ − 8y′ + 16y = e3x  6. y″ − 2y′ − 15y = sin x

 Choosing the Form of the Particular 
Solution In Exercises 7–10, determine a suitable 
choice for yp for the differential equation, given 
its general solution of the homogeneous equation. 
Explain your reasoning. (Do not solve the equation.)

 y″ + ay′ + by = F(x)  yh

 7. y″ + y′ = 4x + 6  C1 + C2e
−x

 8. y ″ − 9y = x + 2e−3x  C1e
−3x + C2e

3x

 9. 3y″ + 6y′ = 4 + sin x  C1 + C2e
−2x

10. y″ + y = 8 cos x  C1 cos x + C2 sin x

 Method of Undetermined Coefficients In 
Exercises 11–16, solve the differential equation by 
the method of undetermined coefficients.

11. y″ + 2y′ = e−2x 12. y″ − 9y = 5e3x

13. y″ + 9y = sin 3x

14. 16y″ − 8y′ + y = 4(x + ex�4)
15. y′″ − 3y″ + 4y = 2 + e2x 16. y′″ − 3y′ + 2y = 2e−2x

Using Initial Conditions In Exercises 17–22, solve the 
differential equation by the method of undetermined  
coefficients subject to the initial condition(s).

17. y″ + y = x3 18. y″ + 4y = 4

 y(0) = 1, y′(0) = 0  y(0) = 1, y′(0) = 6

19. y″ + y′ = 2 sin x 20. y″ + y′ − 2y = 3 cos 2x

 y(0) = 0, y′(0) = −3  y(0) = −1, y′(0) = 2

21. y′ − 4y = xex − xe4x 22. y′ + 2y = sin x

 y(0) = 1
3

  y(π2) =
2
5

 Method of Variation of Parameters In 
Exercises 23–28, solve the differential equation by 
the method of variation of parameters.

23. y″ + y = sec x 24. y″ + y = sec x tan x

25. y″ + 4y = csc 2x 26. y″ − 4y′ + 4y = x2e2x

27. y″ − 2y′ + y = ex ln x 28. y″ − 4y′ + 4y =
e2x

x

Motion of a Spring In Exercises 31–34, use the differential 
equation

w
g

y″(t) + by′(t) + ky(t) = w
g

F(t)

which models the oscillating motion of an object on the end of 
a spring (see figure). In the equation, y is the displacement 
from equilibrium (positive direction is downward), measured 
in feet, t is time in seconds,  

m

L = natural
length

y = displacement

Spring displacement

 
w is the weight of the object, 
g is the acceleration due to 
gravity, b is the magnitude of 
the resistance to the motion, 
k is the spring constant from 
Hooke’s Law, and F(t) is the 
acceleration imposed on the 
system. Find the displacement y as a function of time t for the 
oscillating motion described subject to the initial conditions. 
Use a graphing utility to graph the displacement function.

31. w = 24, g = 32, b = 0, k = 48, F(t) = 48 sin 4t

 y(0) = 1
4, y′(0) = 0

In Exercises 29 and 30, use the electrical circuit differential 
equation

d2q
dt2 + (RL) 

dq
dt

+ ( 1
LC)q = (1L)E(t)

where R is the  
resistance (in ohms), 
C is the capacitance  
(in farads), L is the  
inductance (in henrys), 
E(t) is the electromotive 
force (in volts), and 
q is the charge on the 
capacitor (in coulombs). 
Find the charge q as 
a function of time t for the electrical circuit described. 
Assume that q(0) = 0 and q′(0) = 0.

29. R = 20, C = 0.02, L = 2, E(t) = 12 sin 5t

30. R = 20, C = 0.02, L = 1, E(t) = 10 sin 5t

Electrical Circuits
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1152 Chapter 16 Additional Topics in Differential Equations

32. w = 2, g = 32, b = 0, k = 4, F(t) = 4 sin 8t

 y(0) = 1
4, y′(0) = 0

33. w = 2, g = 32, b = 1, k = 4, F(t) = 4 sin 8t

 y(0) = 1
4, y′(0) = −3

34. w = 4, g = 32, b = 1
2, k = 25

2 , F(t) = 0

 y(0) = 1
2, y′(0) = −4

EXPLORING CONCEPTS
35.  Motion of a Spring Rewrite yh in the solution to 

Exercise 31 by using the identity

 a cos ωt + b sin ωt = √a2 + b2 sin(ωt + ϕ)

 where ϕ = arctan a�b.

 36.  HOW DO YOU SEE IT? The figure shows 
the particular solution of the differential equation

 
4
32

y″ + by′ +
25
2

y = 0

  that models the oscillating motion of an object  
on the end of a spring and satisfies the initial 
conditions y(0) = 1

2 and y′(0) = −4 for values of 
the resistance component b in the interval [0, 1]. 
According to the figure, is the motion damped or 
undamped when b = 0? When b > 0? (You do 
not need to solve the differential equation.)

y

t

b
Generated by Maple

b = 0

b = 1

b = 1
2

37.  Motion of a Spring Refer to the differential equation and 
the initial conditions given in Exercise 36.

 (a)  When there is no resistance to the motion (b = 0), 
describe the motion.

 (b) For b > 0, what is the ultimate effect of the retarding force?

 (c)  Is there a real number M such that there will be no oscillations 
of the spring for b > M? Explain your answer.

38.  Solving a Differential Equation Solve the differential 
equation given that y1 and y2 are solutions of the corresponding 
homogeneous equation.

 (a) x2y″ − xy′ + y = 4x ln x

  y1 = x, y2 = x ln x

 (b) x2y″ + xy′ + 4y = sin(ln x)
  y1 = sin(ln x2), y2 = cos(ln x2)

True or False? In Exercises 39 and 40, determine whether 
the statement is true or false. If it is false, explain why or give 
an example that shows it is false.

39.  yp = −e2x cos e−x is a particular solution of the differential 
equation

 y ″ − 3y′ + 2y = cos e−x

40. yp = −1
8e2x is a particular solution of the differential equation

 y″ − 6y′ = e2x.

PUTNAM EXAM CHALLENGE
41.  For all real x, the real-valued function y = f (x) satisfies 

y″ − 2y′ + y = 2ex.

 (a)  If f (x) > 0 for all real x, must f ′(x) > 0 for all real 
x? Explain.

 (b)  If f ′(x) > 0 for all real x, must f (x) > 0 for all real 
x? Explain.

This problem was composed by the Committee on the Putnam Prize Competition. 
© The Mathematical Association of America. All rights reserved.

The fall of a parachutist is described by the second-order linear 
differential equation

(−w
g) 

d2y
dt2 − k 

dy
dt

= w

where w is the weight  
of the parachutist, y is  
the height at time t, g  
is the acceleration  
due to gravity, and k is  
the drag factor of the  
parachute.

(a) The parachute is opened at 2000 feet, so 

 y(0) = 2000.

 At that time, the velocity is

 y′(0) = −100 feet per second.

  For a 160-pound parachutist who has a parachute with a drag 
factor of k = 8, the differential equation is

 −5y ″ − 8y′ = 160.

  Using the initial conditions, verify that the solution of the  
differential equation is 

 y = 1950 + 50e−1.6t − 20t.

(b)  Consider a 192-pound parachutist who has a parachute with 
a drag factor of k = 9. Using the initial conditions given in  
part (a), write and solve a differential equation that describes 
the fall of the parachutist.

Parachute Jump
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 16.4 Series Solutions of Differential Equations 1153

16.4  Series Solutions of Differential Equations

 Use a power series to solve a differential equation.
 Use a Taylor series to find the series solution of a differential equation.

Power Series Solution of a Differential Equation
Power series can be used to solve  certain types of differential equations. This section 
begins with the general power series solution method.

Recall from Chapter 9 that a power series represents a function f  on an interval 
of convergence and that you can successively differentiate the power series to obtain 
a series for f′, f ″, and so on. These properties are used in the power series solution 
method demonstrated in the first two examples.

 Power Series Solution

Use a power series to solve the differential equation y′ − 2y = 0.

Solution Assume that y = ∑
∞

n=0
 anxn is a solution. Then,

y′ = ∑
∞

n=1
 nanxn−1.

Substituting for y′ and −2y, you obtain the following series form of the differential 
equation. (Note that, from the third step to the fourth, the index of summation is changed 
to ensure that xn occurs in both sums.)

 y′ − 2y = 0

 ∑
∞

n=1
 nanx

n−1 − 2∑
∞

n=0
anxn = 0

 ∑
∞

n=1
 nanxn−1 = ∑

∞

n=0
 2anxn

 ∑
∞

n=0
 (n + 1)an+1x

n = ∑
∞

n=0
 2anxn

Now, by equating coefficients of like terms, you obtain the recursion formula

 (n + 1)an+1 = 2an

which implies that

an+1 =
2an

n + 1
, n ≥ 0.

This formula generates the following results.

a0 a1 a2 a3 a4 a5 .  .  .

a0 2a0 
22a0

2
 

23a0

3!
 

24a0

4!
 

25a0

5!
 .  .  .

Using these values as the coefficients for the solution series, you have

 y = ∑
∞

n=0
 
2na0

n!
xn

 = a0 ∑
∞

n=0
 
(2x)n

n!

 = a0e
2x. 

Exploration
In Example 1, the differential 
equation could be solved 
easily without using a series. 
Determine which method 
should be used to solve the 
differential equation

y′ − 2y = 0

and show that the result is 
the same as that obtained in 
the example.
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1154 Chapter 16 Additional Topics in Differential Equations

In Example 1, the differential equation could be solved easily without using a 
series. The differential equation in Example 2 cannot be solved by any of the methods 
discussed in previous sections.

 Power Series Solution

Use a power series to solve the differential equation

y″ + xy′ + y = 0.

Solution Assume that y = ∑
∞

n=0
 anxn is a solution. Then you have

y′ = ∑
∞

n=1
 nanxn−1, xy′ = ∑

∞

n=1
 nanxn, y″ = ∑

∞

n=2
 n(n − 1)anxn−2.

Substituting for y″, xy′, and y in the given differential equation, you obtain the following 
series.

 ∑
∞

n=2
 n(n − 1)anxn−2 + ∑

∞

n=0
 nanxn + ∑

∞

n=0
 anxn = 0

 ∑
∞

n=2
 n(n − 1)anxn−2 = −∑

∞

n=0
 (n + 1)anxn

To obtain equal powers of x, adjust the summation indices by replacing n by n + 2 in 
the left-hand sum, to obtain

∑
∞

n=0
 (n + 2)(n + 1)an+2xn = −∑

∞

n=0
 (n + 1)anxn.

By equating coefficients, you have 

(n + 2)(n + 1)an+2 = −(n + 1)an

from which you obtain the recursion formula

an+2 = −
(n + 1)

(n + 2)(n + 1)an = −
an

n + 2
, n ≥ 0,

and the coefficients of the solution series are as follows.

 a2 = −
a0

2
  a3 = −

a1

3

 a4 = −
a2

4
=

a0

2 ∙ 4
  a5 = −

a3

5
=

a1

3 ∙ 5

 a6 = −
a4

6
= −

a0

2 ∙ 4 ∙ 6
  a7 = −

a5

7
= −

a1

3 ∙ 5 ∙ 7
 ⋮  ⋮

 a2k =
(−1)ka0

2 ∙ 4 ∙ 6 .  .  . (2k) =
(−1)ka0

2k(k!)   a2k+1 =
(−1)ka1

3 ∙ 5 ∙ 7 .  .  . (2k + 1)

So, you can represent the general solution as the sum of two series—one for the  
even-powered terms with coefficients in terms of a0, and one for the odd-powered terms 
with coefficients in terms of a1.

 y = a0(1 −
x2

2
+

x4

2 ∙ 4
− .  .  .) + a1(x −

x3

3
+

x5

3 ∙ 5
− .  .  .)

 = a0 ∑
∞

k=0
 
(−1)kx2k

2k(k!) + a1 ∑
∞

k=0
 

(−1)kx2k+1

3 ∙ 5 ∙ 7 .  .  . (2k + 1)

The solution has two arbitrary constants, a0 and a1, as you would expect in the general 
solution of a second-order differential equation. 97
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 16.4 Series Solutions of Differential Equations 1155

Approximation by Taylor Series
A second type of series solution method involves a differential equation with initial 
conditions and makes use of Taylor series, as given in Section 9.10.

 Approximation by Taylor Series

See LarsonCalculus.com for an interactive version of this type of example.

Use a Taylor series to find the first six terms of the series solution of

y′ = y2 − x

for the initial condition y = 1 when x = 0. Then use this polynomial to approximate 
values of y for 0 ≤ x ≤ 1.

Solution Recall from Section 9.10 that, for c = 0,

y = y(0) + y′(0)x +
y″(0)

2!
x2 +

y′″(0)
3!

x3 + .  .  . .

Because y(0) = 1 and y′ = y2 − x, you obtain the following.

  y(0) = 1

 y′ = y2 − x  y′(0) = 1

 y″ = 2yy′ − 1  y″(0) = 2 − 1 = 1

 y′″ = 2yy″ + 2(y′)2  y′″(0) = 2 + 2 = 4

 y(4) = 2yy′″ + 6y′y″  y(4)(0) = 8 + 6 = 14

 y(5) = 2yy(4) + 8y′y′″ + 6(y″)2  y(5)(0) = 28 + 32 + 6 = 66

So, y can be approximated by the first six terms of the series solution shown below.

 y ≈ y(0) + y′(0)x +
y″(0)

2!
x2 +

y′″(0)
3!

x3 +
y(4)(0)

4!
x4 +

y(5)(0)
5!

x5

 = 1 + x +
1
2

x2 +
4
3!

x3 +
14
4!

x4 +
66
5!

x5

Using this polynomial, you can approximate values for y in the interval 0 ≤ x ≤ 1, as 
shown in the table below.

  

In addition to approximating values of a  

x
0.2

6 terms

4 terms

2 terms

1.00.80.60.4

8

6

4

2

y

Figure 16.7

 
function, you can also use a series solution to 
sketch a graph. In Figure 16.7, the series  
solutions of y′ = y2 − x using the first two, 
four, and six terms are shown, along with an 
approximation found using a computer  
algebra system. The approximations are 
nearly the same for values of x close to 0. 
As x approaches 1, however, there is a  
noticeable difference among the  
approximations. For a series solution that is 
more accurate near x = 1, repeat Example 3 
using c = 1.

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

y 1.0000 1.1057 1.2264 1.3691 1.5432 1.7620 2.0424 2.4062 2.8805 3.4985 4.3000
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1156 Chapter 16 Additional Topics in Differential Equations

16.4 Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

CONCEPT CHECK
1.  Power Series Solution Method Describe how to 

use power series to solve a differential equation.

2.  Recursion Formula What is a recursion formula? 
Give an example.

 Power Series Solution In Exercises 3– 6, use 
a power series to solve the differential equation.

 3. 5y′ + y = 0

 4. (x + 2)y′ + y = 0

 5. y′ + 3xy = 0

 6. y′ − 2xy = 0

 Finding Terms of a Power Series Solution  
In Exercises 7 and 8, the solution of the differential 
equation is a sum of two power series. Find 
the first three terms of each power series.  
(See Example 2.)

 7. (x2 + 4)y″ + y = 0

 8. y″ + x2y = 0

 Approximation by Taylor Series In 
Exercises 9–14, use a Taylor series to find the first n 
terms of the series solution of the differential equa-
tion that satisfies the initial condition(s). Use this 
polynomial to approximate y for the given value 
of x.

 9. y′ + (2x − 1)y = 0, y(0) = 2, n = 5, x = 1
2

10. y′ − 2xy = 0, y(0) = 1, n = 4, x = 1

11. y ″ − 2xy = 0, y(0) = 1, y′(0) = −3, n = 6, x = 1
4

12. y ″ − 2xy′ + y = 0, y(0) = 1, y′(0) = 2, n = 8, x = 1
2

13. y ″ + x2y′ − (cos x)y = 0, y(0) = 3, y′(0) = 2, n = 4, x = 1
3

14. y ″ + exy′ − (sin x)y = 0, y(0) = −2, y′(0) = 1, n = 4, x = 1
5

EXPLORING CONCEPTS
Using Different Methods In Exercises 15–18, verify 
that the power series solution of the differential equation 
is equivalent to the solution found using previously learned 
solution techniques.

15. y′ − ky = 0

16. y′ + ky = 0

17. y″ − k2y = 0

18. y″ + k2y = 0

19. Investigation Consider the differential equation

 y″ − xy′ = 0

 with the initial conditions

 y(0) = 0 and y′(0) = 2.

 (a) Find the series solution satisfying the initial conditions.

 (b)  Use a graphing utility to graph the third-degree and fifth-
degree series approximations of the solution. Identify the 
approximations.

 (c) Identify the symmetry of the solution.

 20.  HOW DO YOU SEE IT? Consider the  
differential equation

 y ″ + 9y = 0

  with initial conditions y(0) = 2 and y′(0) = 6. 
The figure shows the graph of the solution of 
the differential equation and the third-degree 
and fifth-degree polynomial approximations of 
the solution. Identify each.

x

y

2 4−4

−6

2
4
6
8

10

Verifying that a Series Converges In Exercises 21–24, 
use the power series solution of the differential equation to 
verify that the series converges to the given function on the 
indicated interval. 

21. ∑
∞

n=0
 
xn

n!
= ex, (−∞, ∞)

 Differential equation: y′ − y = 0

22. ∑
∞

n=0
 
(−1)nx2n

(2n)! = cos x, (−∞, ∞)

 Differential equation: y ″ + y = 0

23. ∑
∞

n=0
 
(−1)nx2n+1

2n + 1
= arctan x, (−1, 1)

 Differential equation: (x2 + 1)y ″ + 2xy′ = 0

24. ∑
∞

n=0
 

(2n)!x2n+1

(2nn!)2(2n + 1) = arcsin x, (−1, 1)

 Differential equation: (1 − x2)y ″ − xy′ = 0

25.  Airy’s Equation Find the first six terms of the series  
solution of Airy’s equation, y ″ − xy = 0. 97

81
33

72
75

37
8_

16
04

 
09

/1
3/

16
 

 F
in

al
 P

ag
es

CYAN    MAGENTA    YELLOW   BLACK

Larson Texts, Inc. • Multivariable Calculus 11e • CALC11-WFH

© C
en

ga
ge

 Le
arn

ing
.  N

ot 
for

 di
str

ibu
tio

n.



  Review Exercises 1157

Review Exercises See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Testing for Exactness In Exercises 1 and 2, determine 
whether the differential equation is exact. 

 1. (y + x3 + xy2) dx − x dy = 0

 2. (5x − y) dx + (5y − x) dy = 0

Solving an Exact Differential Equation In Exercises 
3–6, verify that the differential equation is exact. Then find 
the general solution.

 3. (10x + 8y + 2) dx + (8x + 5y + 2) dy = 0

 4. (2x − 2y3 + y) dx + (x − 6xy2) dy = 0

 5. (x − y − 5) dx − (x + 3y − 2) dy = 0

 6. y sin(xy) dx + [x sin(xy) + y] dy = 0

Graphical and Analytic Analysis In Exercises 7 and 8, 
(a) sketch an approximate solution of the differential equation 
satisfying the initial condition on the slope field, (b) find the 
particular solution that satisfies the initial condition, and (c) use a 
graphing utility to graph the particular solution. Compare the 
graph with the sketch in part (a).

 7. (2x − y) dx + (2y − x) dy = 0, y(2) = 2

 y

x
42−4

4

2

−2

−4

−2

 8. (6xy − y3) dx + (4y + 3x2 − 3xy2) dy = 0, y(0) = 1

 y

x
42−4

4

2

−2

−4

−2

Finding a Particular Solution In Exercises 9–12, find the 
particular solution of the differential equation that satisfies the 
initial condition.

 9. (2x + y − 3) dx + (x − 3y + 1) dy = 0, y(2) = 0

10. 3x2y2 dx + (2x3y − 3y2) dy = 0, y(1) = 2

11. −cos 2y dx + 2x sin 2y dy = 0, y(3) = π

12. [9 + ln(xy3)] dx +
3x
y

 dy = 0, y(1) = 1

Finding an Integrating Factor In Exercises 13–16, find 
the integrating factor that is a function of x or y alone and use 
it to find the general solution of the differential equation.

13. (3x2 − y2) dx + 2xy dy = 0

14. 2xy dx + (y2 − x2) dy = 0

15. dx + (3x − e−2y) dy = 0

16. cos y dx − [2(x − y) sin y + cos y] dy = 0

Verifying a Solution In Exercises 17 and 18, verify the 
solution of the differential equation. Then use a graphing utility 
to graph the particular solutions for several different values of 
C1 and C2. 

 Solution Differential Equation

17. y = C1e
−3x + C2e

2x y″ + y′ − 6y = 0

18. y = C1 cos 3x + C2 sin 3x y ″ + 9y = 0

Finding a General Solution In Exercises 19–28, use a 
characteristic equation to find the general solution of the linear 
differential equation.

19. 2y″ + 5y′ + 3y = 0

20. y″ − 4y′ − 2y = 0

21. y″ − 6y′ = 0

22. 25y″ + 30y′ + 9y = 0

23. y″ + 8y = 0

24. y″ + y′ + 3y = 0

25. y′″ − 2y″ − 3y′ = 0

26. y′″ − 6y″ + 12y′ − 8y = 0

27. y(4) − 5y″ = 0

28. y(4) + 6y″ + 9y = 0

Finding a Particular Solution: Initial Conditions In 
Exercises 29–32, use a characteristic equation to find the 
particular solution of the linear differential equation that  
satisfies the initial conditions. 

29. y ″ − y′ − 2y = 0 30. y ″ + 4y′ + 5y = 0

 y(0) = 0, y′(0) = 3 y(0) = 2, y′(0) = −7

31. y ″ + 2y′ − 3y = 0 32. y ″ + 12y′ + 36y = 0

 y(0) = 2, y′(0) = 0 y(0) = 2, y′(0) = 1

Finding a Particular Solution: Boundary Conditions 
In Exercises 33 and 34, use a charcteristic equation to find 
the particular solution of the linear differential equation that  
satisfies the boundary conditions. 

33. y ″ + 2y′ + 5y = 0 34. y ″ + y = 0

 y(1) = 4, y(2) = 0 y(0) = 2, y(π�2) = 1
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1158 Chapter 16 Additional Topics in Differential Equations

Motion of a Spring In Exercises 35 and 36, a 64-pound 
weight stretches a spring 4

3 feet from its natural length. Use 
the given information to find a formula for the position of the 
weight as a function of time.

35.  The weight is pulled 12 foot below equilibrium and released.

36.  The weight is pulled 3
4 foot below equilibrium and released. 

The motion takes place in a medium that furnishes a damping 
force of magnitude 18∣v∣ at all times.

Method of Undetermined Coefficients In Exercises 
37–40, solve the differential equation by the method of  
undetermined coefficients.

37. y″ + y = x3 + x

38. y″ + 2y = e2x + x

39. y″ − 8y′ − 9y = 9x − 10

40. y″ + 5y′ + 4y = x2 + sin 2x

Choosing the Form of the Particular Solution In 
Exercises 41 and 42, determine a suitable choice for yp for 
the differential equation, given its general solution of the  
homogeneous equation. Explain your reasoning. (Do not solve 
the equation.)

 y″ + ay′ + by = F(x)  yh

41. y″ − 4y′ + 3y = ex + 8e3x  C1e
x + C2e

3x

42. y″ = 2x + 1  C1 + C2x

Method of Undetermined Coefficients In Exercises 
43 and 44, solve the differential equation by the method of 
undetermined coefficients.

43. y″ + y = 2 cos x

44. 2y″ − y′ = 4x

Using Initial Conditions In Exercises 45–50, solve the  
differential equation by the method of undetermined  
coefficients subject to the initial conditions.

45. y ″ − y′ − 6y = 54 46. y ″ + 25y = ex

 y(0) = 2, y′(0) = 0  y(0) = 0, y′(0) = 0

47. y ″ + 4y = cos x 48. y ″ + 3y′ = 6x

 y(0) = 6, y′(0) = −6  y(0) = 2, y′(0) = 10
3

49. y ″ − y′ − 2y = 1 + xe−x

 y(0) = 1, y′(0) = 3

50. y ″′ − y ″ = 4x2

 y(0) = 1, y′(0) = 1, y ″(0) = 1

Method of Variation of Parameters In Exercises 51–54, 
solve the differential equation by the method of variation of 
parameters.

51. y″ + 9y = csc 3x 52. 4y″ + y = sec 
x
2

 tan 
x
2

53. y″ − 2y′ + y = 2xex 54. y″ + 2y′ + y =
1

x2ex

55.  Electrical Circuit The differential equation

 
d2q
dt2 + 4 

dq
dt

+ 8q = 3 sin 4t

  models the charge q on a capacitor of an electrical circuit. Find 
the charge q as a function of time t. Assume that q(0) = 0 and 
q′(0) = 0.

56. Investigation The differential equation

 
8
32

y″ + by′ + ky =
8
32

F(t), y(0) = 1
2

, y′(0) = 0

  models the oscillating motion of an object on the end of a 
spring, where y is the displacement from equilibrium (positive 
direction is downward), measured in feet, t is time in seconds, 
b is the magnitude of the resistance to the motion, k is the 
spring constant from Hooke’s Law, and F(t) is the acceleration 
imposed on the system.

 (a)  Solve the differential equation and use a graphing utility to 
graph the solution for each of the assigned quantities for b, 
k, and F(t).

  (i) b = 0, k = 1, F(t) = 24 sin πt

  (ii) b = 0, k = 2, F(t) = 24 sin(2√2 t)
  (iii) b = 0.1, k = 2, F(t) = 0

  (iv) b = 1, k = 2, F(t) = 0

 (b) Describe the effect of increasing the resistance to motion b.

 (c)  Explain how the motion of the object changes when a 
stiffer spring (greater value of k) is used.

57. Think About It

 (a)  Explain how, by observation, you know that a form 
of a particular solution of the differential equation 
y ″ + 3y = 12 sin x  is yp = A sin x.

 (b)  Use your explanation in part (a) to find a particular solution 
of the differential equation y ″ + 5y = 10 cos x.

 (c)  Compare the algebra required to find particular solutions 
in parts (a) and (b) with that required when the form of the  
particular solution is yp = A cos x + B sin x.

58.   Think About It Explain how you can find a particular  
solution of the differential equation y ″ + 4y′ + 6y = 30 by 
observation.

Power Series Solution In Exercises 59 and 60, use a 
power series to solve the differential equation.

59. (x − 4)y′ + y = 0 60. y ″ + 3xy′ − 3y = 0

Approximation by Taylor Series In Exercises 61 and 62, 
use a Taylor series to find the first n terms of the series solution 
of the differential equation that satisfies the initial conditions. 
Use this polynomial to approximate y for the given value of x.

61. y ″ + y′ − exy = 0, y(0) = 2, y′(0) = 0, n = 4, x =
1
4

62. y ″ + xy = 0, y(0) = 1, y′(0) = 1, n = 6, x =
1
2
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  P.S. Problem Solving 1159

P.S. Problem Solving See CalcChat.com for tutorial help and 
worked-out solutions to odd-numbered exercises.

1.  Finding a General Solution Find the value of k that 
makes the differential equation

 (3x2 + kxy2) dx − (5x2y + ky2) dy = 0

 exact. Using this value of k, find the general solution.

2.  Using an Integrating Factor The differential equation 
(kx2 + y2) dx − kxy dy = 0 is not exact, but the integrating factor 
1�x2 makes it exact.

 (a) Use this information to find the value of k.

 (b) Using this value of k, find the general solution.

3.  Finding a General Solution Find the general solution 
of the differential equation y ″ − a2y = 0, a > 0. Show that the 
general solution can be written in the form

 y = C1 cosh ax + C2 sinh ax.

4.  Finding a General Solution Find the general solution of 
the differential equation y ″ + β2y = 0. Show that the general 
solution can be written in the form

 y = C sin(βx + ϕ), 0 ≤ ϕ < 2π.

5.  Distinct Real Zeros Given that the characteristic equation 
of the differential equation y ″ + ay′ + by = 0 has two distinct 
real zeros, m1 = r + s and m2 = r − s, where r and s are real  
numbers, show that the general solution of the differential  
equation can be written in the form

 y = erx(C1 cosh sx + C2 sinh sx).

6.  Limit of a Solution Given that a and b are positive and 
that y(x) is a solution of the differential equation

 y ″ + ay′ + by = 0

 show that lim
x→∞

 y(x) = 0.

7.  Trivial and Nontrivial Solutions Consider the differential 
equation y ″ + ay = 0 with boundary conditions y(0) = 0 and 
y(L) = 0 for some nonzero real number L.

 (a)  For a = 0, show that the differential equation has only the 
trivial solution y = 0.

 (b)  For a < 0, show that the differential equation has only the 
trivial solution y = 0.

 (c)  For a > 0, find the value(s) of a for which the solution is 
nontrivial. Then find the corresponding solution(s).

8.  Euler’s Differential Equation Euler’s differential 
equation is of the form

 x2y ″ + axy′ + by = 0, x > 0

 where a and b are constants.

 (a)  Show that this equation can be transformed into a  
second-order linear differential equation with constant 
coefficients by using the substitution x = et.

 (b) Solve x2y ″ + 6xy′ + 6y = 0.

 9.  Pendulum Consider a pendulum of length L that swings 
by the force of gravity only.

L
θ

  For small values of θ = θ(t), the motion of the pendulum can 
be approximated by the differential equation

 
d2θ
dt2 +

g
L
θ = 0

  where g is the acceleration due to gravity.

 (a)  Find the general solution of the differential equation and 
show that it can be written in the form

  θ(t) = A cos[√g
L
(t + ϕ)].

 (b)  Find the particular solution for a pendulum of length  
0.25 meter when the initial conditions are θ(0) = 0.1 radian 
and θ′(0) = 0.5 radian per second. (Use g = 9.8 meters 
per second per second.)

 (c) Determine the period of the pendulum.

 (d) Determine the maximum value of θ.

 (e)  How much time from t = 0 does it take for θ to be 0 the 
first time? the second time?

 (f )  What is the angular velocity θ′ when θ = 0 the first time? 
the second time?

10.  Deflection of a Beam A horizontal beam with a length 
of 2 meters rests on supports located at the ends of the beam.

2 meters

  The beam is supporting a load of W kilograms per meter. The 
resulting deflection y of the beam at a horizontal distance of  
x meters from the left end can be modeled by

 A
d2y
dx2 = 2Wx −

1
2

Wx2

 where A is a positive constant.

 (a)  Solve the differential equation to find the deflection y as a 
function of the horizontal distance x.

 (b)  Use a graphing utility to determine the location and value 
of the maximum deflection.
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1160 Chapter 16 Additional Topics in Differential Equations

Damped Motion In Exercises 11–14, consider a damped 
mass-spring system whose motion is described by the differential 
equation

d2y
dt2 + 2λ 

dy
dt

+ ω2y = 0.

The zeros of its characteristic equation are 

m1 = −λ + √λ2 − ω2

and

m2 = −λ − √λ2 − ω2.

For λ2 − ω2 > 0, the system is overdamped; for λ2 − ω2 = 0, it is 
critically damped; and for λ2 − ω2 < 0, it is underdamped.

(a)  Determine whether the differential equation represents an 
overdamped, critically damped, or underdamped system.

(b)  Find the particular solution that satisfies the initial  
conditions.

(c)  Use a graphing utility to graph the particular solution 
found in part (b). Explain how the graph illustrates the 
type of damping in the system.

11. 
d2y
dt2 + 8 

dy
dt

+ 16y = 0 12. 
d2y
dt2 + 2 

dy
dt

+ 26y = 0

 y(0) = 1, y′(0) = 1  y(0) = 1, y′(0) = 4

13. 
d2y
dt2 + 20 

dy
dt

+ 64y = 0 14. 
d2y
dt2 + 2 

dy
dt

+ y = 0

 y(0) = 2, y′(0) = −20  y(0) = 2, y′(0) = −1

15.  Airy’s Equation Consider Airy’s equation given in 
Section 16.4, Exercise 25. Rewrite the equation as 

 y ″ − (x − 1)y − y = 0.

 Then use a power series of the form

 y = ∑
∞

n=0
 an(x − 1)n

  to find the first eight terms of the solution. Compare your 
result with that of Exercise 25 in Section 16.4.

16.  Chebyshev’s Equation Consider Chebyshev’s equation

 (1 − x2)y ″ − xy′ + k2y = 0.

  Polynomial solutions of this differential equation are called 
Chebyshev polynomials and are denoted by Tk(x). They satisfy 
the recursion equation

 Tn+1(x) = 2xTn(x) − Tn−1(x).

 (a)  Given that T0(x) = 1 and T1(x) = x, determine the 
Chebyshev polynomials T2(x), T3(x), and T4(x).

 (b)  Verify that T0(x), T1(x), T2(x), T3(x), and T4(x) are solutions 
of the given differential equation.

 (c)  Verify the following Chebyshev polynomials.

  T5(x) = 16x5 − 20x3 + 5x

  T6(x) = 32x6 − 48x4 + 18x2 − 1

  T7(x) = 64x7 − 112x5 + 56x3 − 7x

17.  Bessel’s Equation: Order Zero The differential  
equation x2y ″ + xy′ + x2y = 0 is known as Bessel’s equation 
of order zero.

 (a) Use a power series of the form 

  y = ∑
∞

n=0
 anxn

  to find the solution.

 (b)  Compare your result with that of the function J0(x) given 
in Section 9.8, Exercise 65.

18. Bessel’s Equation: Order One The differential equation

 x2y ″ + xy′ + (x2 − 1)y = 0

 is known as Bessel’s equation of order one.

 (a) Use a power series of the form

  y = ∑
∞

n=0
 anxn

  to find the solution.

 (b)  Compare your result with that of the function J1(x) given 
in Section 9.8, Exercise 66.

19. Hermite’s Equation Consider Hermite’s equation

 y ″ − 2xy′ + 2ky = 0.

 (a) Use a power series of the form

  y = ∑
∞

n=0
 anxn

   to find the solution when k = 4. [Hint: Choose the  
arbitrary constants such that the leading term is (2x)k.]

 (b)  Polynomial solutions of Hermite’s equation are called 
Hermite polynomials and are denoted by Hk(x). The general 
form for Hk(x) can be written as

  Hk(x) = ∑
P

n=0
 
(−1)nk!(2x)k−2n

n!(k − 2n)!

   where P is the greatest integer less than or equal to k�2. 
Use this formula to determine the Hermite polynomials   
H0(x), H1(x), H2(x), H3(x), and H4(x).

20. Laguerre’s Equation Consider Laguerre’s equation

 xy ″ + (1 − x)y′ + ky = 0.

 (a)  Polynomial solutions of Laguerre’s equation are called 
Laguerre polynomials and are denoted by Lk(x). Use a 
power series of the form

  y = ∑
∞

n=0
 anxn

  to show that

  Lk(x) = ∑
k

n=0
 
(−1)nk!xn

(k − n)!(n!)2.

  Assume that a0 = 1.

 (b)  Determine the Laguerre polynomials L0(x), L1(x), L2(x), 
L3(x),and L4(x). 97
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