
 Appendix E Complex Numbers E1

12.1  Vector-Valued Functions

  Use the imaginary unit i to write complex numbers and to add, subtract, and 
multiply complex numbers. 

 Find complex solutions of quadratic equations.
 Write the trigonometric forms of complex numbers.
 Find powers and nth roots of complex numbers.

Operations with Complex Numbers
Some equations have no real solutions. For instance, the quadratic equation

x2 + 1 = 0 Equation with no real solution

has no real solution because there is no real number x that can be squared to produce 
−1. To overcome this deficiency, mathematicians created an expanded system of 
numbers using the imaginary unit i, defined as

i = √−1 Imaginary unit

where i2 = −1. By adding real numbers to real multiples of this imaginary unit, you 
obtain the set of complex numbers. Each complex number can be written in the 
standard form a + bi. The real number a is called the real part of the complex 
number a + bi, and the number bi (where b is a real number) is called the imaginary 
part of the complex number.

Definition of a Complex Number

For real numbers a and b, the number

a + bi

is a complex number. If b ≠ 0, then a + bi is called an imaginary number. 
A number of the form bi, where b ≠ 0, is called a pure imaginary number.

To add (or subtract) two complex numbers, you add (or subtract) the real and 
imaginary parts of the numbers separately.

Addition and Subtraction of Complex Numbers

If a + bi and c + di are two complex numbers written in standard form,  
then their sum and difference are defined as follows.

Sum: (a + bi) + (c + di) = (a + c) + (b + d)i

Difference: (a + bi) − (c + di) = (a − c) + (b − d)i
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E2 Appendix E Complex Numbers

The additive identity in the complex number system is zero (the same as in the 
real number system). Furthermore, the additive inverse of the complex number a + bi is

−(a + bi) = −a − bi. Additive inverse

So, you have

(a + bi) + (−a − bi) = 0 + 0i = 0.

 Adding and Subtracting Complex Numbers

a.  (3 − i) + (2 + 3i) = 3 − i + 2 + 3i Remove parentheses.

  = 3 + 2 − i + 3i Group like terms.

  = (3 + 2) + (−1 + 3)i
  = 5 + 2i Write in standard form.

b.  2i + (−4 − 2i) = 2i − 4 − 2i Remove parentheses.

  = −4 + 2i − 2i Group like terms.

  = −4 Write in standard form.

c.  3 − (−2 + 3i) + (−5 + i) = 3 + 2 − 3i − 5 + i

  = 3 + 2 − 5 − 3i + i

  = 0 − 2i

  = −2i 

In Example 1(b), notice that the sum of two complex numbers can be a real  
number.

Many of the properties of real numbers are valid for complex numbers as well. 
Here are some examples.

Associative Properties of Addition and Multiplication
Commutative Properties of Addition and Multiplication
Distributive Property of Multiplication over Addition

Notice how these properties are used when two complex numbers are multiplied.

 (a + bi)(c + di) = a(c + di) + bi(c + di) Distributive Property

 = ac + (ad)i + (bc)i + (bd)i2 Distributive Property

 = ac + (ad)i + (bc)i + (bd)(−1) i2 = −1

 = ac − bd + (ad)i + (bc)i Commutative Property

 = (ac − bd) + (ad + bc)i Associative Property

The procedure above is similar to multiplying two polynomials and combining like 
terms, as in the FOIL method.

REMARK Rather than trying 
to memorize the multiplication 
rule at the right, you can simply 
remember how the Distributive 
Property is used to multiply  
two complex numbers. The  
procedure is similar to  
multiplying two polynomials 
and combining like terms.
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 Appendix E Complex Numbers E3

 Multiplying Complex Numbers

a.  (3 + 2i)(3 − 2i) = 3(3 − 2i) + 2i(3 − 2i) Distributive Property

  = 9 − 6i + 6i − 4i2 Distributive Property

  = 9 − 6i + 6i − 4(−1)  i2 = −1

  = 9 + 4  Simplify.

  = 13  Write in standard form.

b.  (3 + 2i)2 = (3 + 2i)(3 + 2i) Square of a binomial

  = 3(3 + 2i) + 2i(3 + 2i) Distributive Property

  = 9 + 6i + 6i + 4i2 Distributive Property

  = 9 + 6i + 6i + 4(−1)  i2 = −1

  = 9 + 12i − 4  Simplify.

  = 5 + 12i  Write in standard form. 

In Example 2(a), notice that the product of two complex numbers can be a real 
number. This occurs with pairs of complex numbers of the form a + bi and a − bi, 
called complex conjugates.

 (a + bi)(a − bi) = a2 − abi + abi − b2i2

 = a2 − b2(−1)
 = a2 + b2

To write the quotient of a + bi and c + di in standard form, where c and d are not 
both zero, multiply the numerator and denominator by the complex conjugate of the 
denominator to obtain

 
a + bi
c + di

=
a + bi
c + di (

c − di
c − di)

 =
(ac + bd) + (bc − ad)i

c2 + d2 . Write in standard form.

 Writing Complex Numbers in Standard Form

 
2 + 3i
4 − 2i

=
2 + 3i
4 − 2i (

4 + 2i
4 + 2i)

 =
8 + 4i + 12i + 6i2

16 − 4i2  Expand.

 =
8 − 6 + 16i

16 + 4
 i2 = −1

 =
2 + 16i

20
 Simplify.

 =
1
10

+
4
5

i Write in standard form. 

Multiply numerator and denominator  
by complex conjugate of denominator.

Multiply numerator and denominator  
by complex conjugate of denominator.
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E4 Appendix E Complex Numbers

Complex Solutions of Quadratic Equations
When using the Quadratic Formula to solve a quadratic equation, you often obtain a 
result such as √−3, which you know is not a real number. By factoring out i = √−1, 
you can write this number in standard form.

√−3 = √3(−1) = √3√−1 = √3i

The number √3i is called the principal square root of −3.

Principal Square Root of a Negative Number

If a is a positive number, then the principal square root of the negative 
number −a is defined as

√−a = √ai.

 Writing Complex Numbers in Standard Form

a.  √−3√−12 = √3i√12i

  = √36i2

  = 6(−1)
  = −6

b.  √−48 − √−27 = √48i − √27i

  = 4√3i − 3√3i

  = √3i

c.  (−1 + √−3)2 = (−1 + √3i)2
  = (−1)2 − 2√3i + (√3)2(i2)
  = 1 − 2√3i + 3(−1)
  = −2 − 2√3i

 Complex Solutions of a Quadratic Equation

Solve 3x2 − 2x + 5 = 0.

Solution

 x =
−(−2) ± √(−2)2 − 4(3)(5)

2(3)  Quadratic Formula

 =
2 ± √−56

6
 Simplify.

 =
2 ± 2√14i

6
 Write √−56 in standard form.

 =
1
3
±
√14

3
i Write in standard form. 

REMARK The definition of 
principal square root uses the 
rule

√ab = √a√b

for a > 0 and b < 0. This rule  
is not valid when both a and b 
are negative.
For example,

 √−5√−5 = √5(−1)√5(−1)
 = √5i√5i

 = √25i2

 = 5i2

 = −5

whereas

√(−5)(−5) = √25 = 5.

To avoid problems with  
multiplying square roots of  
negative numbers, be sure to 
convert to standard form  
before multiplying.
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 Appendix E Complex Numbers E5

Trigonometric Form of a Complex Number
Just as real numbers can be represented by points on the real number line, you can 
represent a complex number

z = a + bi

as the point (a, b) in a coordinate plane (the complex plane). The horizontal axis is 
called the real axis and the vertical axis is called the imaginary axis, as shown in 
Figure E.1.

The absolute value of a complex number a + bi is defined as the distance between 
the origin (0, 0) and the point (a, b).

The Absolute Value of a Complex Number

The absolute value of the complex number z = a + bi is given by

∣a + bi∣ = √a2 + b2.

When the complex number a + bi is a real number (that is, b = 0), this definition 
agrees with that given for the absolute value of a real number.

∣a + 0i∣ = √a2 + 02 = ∣a∣
To work effectively with powers and roots of complex numbers, it is helpful to 

write complex numbers in trigonometric form. In Figure E.2, consider the nonzero 
complex number a + bi. By letting θ be the angle from the positive real axis (measured 
 counterclockwise) to the line segment connecting the origin and the point (a, b), you 
can write

a = r cos θ and b = r sin θ

where r = √a2 + b2. Consequently, you have

a + bi = (r cos θ) + (r sin θ)i

from which you can obtain the trigonometric form of a complex number.

Trigonometric Form of a Complex Number

The trigonometric form of the complex number z = a + bi is given by

z = r(cos θ + i sin θ)

where a = r cos θ, b = r sin θ, r = √a2 + b2, and tan θ = b�a. The number  
r is the modulus of z, and θ is called an argument of z.

The trigonometric form of a complex number is also called the polar form. 
Because there are infinitely many choices for θ, the trigonometric form of a complex 
number is not unique. Normally, θ is restricted to the interval 0 ≤ θ < 2π, although 
on occasion it is convenient to use θ < 0.

Real
axis

Imaginary
axis

(−1, 3)
or

−1 + 3i

(−2, −1)
or

−2 − i

(3, 2)
or

3 + 2i

1−1−2 2 3

1

2

3

Figure E.1

rb

a

θ

(  ,   )a  b

Imaginary
axis

Real
axis

Figure E.2
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E6 Appendix E Complex Numbers

 Trigonometric Form of a Complex Number

Write the complex number z = −2 − 2√3i in trigonometric form.

Solution The absolute value of z is

r = ∣−2 − 2√3i∣ = √(−2)2 + (−2√3)2 = √16 = 4

and the angle θ is given by

 tan θ =
b
a

 =
−2√3
−2

 = √3.

Because tan(π�3) = √3 and because z = −2 − 2√3i lies in Quadrant III, choose θ 
to be θ = π + π�3 = 4π�3. So, the trigonometric form is

 z = r(cos θ + i sin θ)

 = 4(cos 
4π
3

+ i sin 
4π
3 ).

See Figure E.3. 

The trigonometric form adapts nicely to multiplication and division of complex 
numbers. Consider the two complex numbers

z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2).

The product of z1 and z2 is

 z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2 )
 = r1r2 [(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)].

Using the sum and difference formulas for cosine and sine, you can rewrite this 
equation as

z1z2 = r1r2 [cos(θ1 + θ2) + i sin(θ1 + θ2)].

This establishes the first part of the rule shown below. The second part is left for you 
to verify (see Exercise 109).

Product and Quotient of Two Complex Numbers

Let z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2) be complex 
numbers.

z1z2 = r1r2 [cos(θ1 + θ2) + i sin(θ1 + θ2)] Product

z1

z2
=

r1

r2
[cos(θ1 − θ2) + i sin(θ1 − θ2)], z2 ≠ 0 Quotient

−2 1−3

−2

−1

−3

−4

⎮z⎮ = 4

z = −2 − 2   3i

Real
axis

Imaginary
axis

3
π4

Figure E.3
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 Appendix E Complex Numbers E7

Note that this rule says that to multiply two complex numbers, you multiply moduli 
and add arguments, whereas to divide two complex numbers, you divide moduli and 
subtract arguments.

 Multiplying Complex Numbers

Find the product z1z2 of the complex numbers.

z1 = 2(cos 
2π
3

+ i sin 
2π
3 ),  z2 = 8(cos 

11π
6

+ i sin 
11π

6 )
Solution

 z1z2 = 2(cos 
2π
3

+ i sin 
2π
3 ) ∙ 8(cos 

11π
6

+ i sin 
11π

6 )
 = 16[cos(2π3 +

11π
6 ) + i sin(2π3 +

11π
6 )] Multiply moduli and  

add arguments.

 = 16[cos 
5π
2

+ i sin 
5π
2 ]

 = 16[cos 
π
2
+ i sin 

π
2] 5π

2
 and 

π
2

 are coterminal.

 = 16[0 + i(1)]
 = 16i

Check this result by first converting to the standard forms z1 = −1 + √3i and 
z2 = 4√3 − 4i and then multiplying algebraically.

 Dividing Complex Numbers

Find the quotient z1�z2 of the complex numbers.

z1 = 24(cos 300° + i sin 300°),  z2 = 8(cos 75° + i sin 75°)

Solution

 
z1

z2
=

24(cos 300° + i sin 300°)
8(cos 75° + i sin 75°)

 =
24
8
[cos(300° − 75°) + i sin(300° − 75°)] Divide moduli and  

subtract arguments.

 = 3[cos 225° + i sin 225°]

 = 3[(−√2
2 ) + i(−√2

2 )]
 = −

3√2
2

−
3√2

2
i 
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E8 Appendix E Complex Numbers

Powers and Roots of Complex Numbers
To raise a complex number to a power, consider repeated use of the multiplication rule.

 z = r(cos θ + i sin θ)
 z2 = r2(cos 2θ + i sin 2θ)
 z3 = r3(cos 3θ + i sin 3θ)

 ⋮
This pattern leads to the next theorem, which is named after the French mathematician 
Abraham DeMoivre (1667–1754).

THEOREM E.1 DeMoivre’s Theorem

If z = r(cos θ + i sin θ) is a complex number and n is a positive integer, then

zn = [r(cos θ + i sin θ)]n = rn(cos nθ + i sin nθ).

 Finding Powers of a Complex Number

Use DeMoivre’s Theorem to find (−1 + √3i)12.

Solution First convert the complex number to trigonometric form.

−1 + √3i = 2(cos 
2π
3

+ i sin 
2π
3 )

Then, by DeMoivre’s Theorem, you have

 (−1 + √3i)12 = [2(cos 
2π
3

+ i sin 
2π
3 )]

12

 = 212[cos(12 ∙ 2π
3 ) + i sin(12 ∙ 2π

3 )]
 = 4096(cos 8π + i sin 8π)
 = 4096. 

Recall that a consequence of the Fundamental Theorem of Algebra is that a 
polynomial equation of degree n has n solutions in the complex number system. Each 
solution is an nth root of the equation. The nth root of a complex number is defined 
below.

Definition of nth Root of a Complex Number

The complex number u = a + bi is an nth root of the complex number z when

z = un = (a + bi)n.
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 Appendix E Complex Numbers E9

To find a formula for an nth root of a complex number, let u be an nth root of z, 
where

u = s(cos β + i sin β) and z = r(cos θ + i sin θ).

By DeMoivre’s Theorem and the fact that un = z, you have

sn(cos nβ + i sin nβ) = r(cos θ + i sin θ).

Taking the absolute value of each side of this equation, it follows that sn = r. Substituting 
r for sn in the previous equation and dividing by r, you get

cos nβ + i sin nβ = cos θ + i sin θ.

So, it follows that

cos nβ = cos θ and sin nβ = sin θ.

Because both sine and cosine have a period of 2π, these last two equations have 
solutions if and only if the angles differ by a multiple of 2π. Consequently, there must 
exist an integer k such that

 nβ = θ + 2πk

 β =
θ + 2πk

n
.

By substituting this value for β into the trigonometric form of u, you get the result stated 
in the next theorem.

THEOREM E.2 nth Roots of a Complex Number

For a positive integer n, the complex number z = r(cos θ + i sin θ) has exactly 
n distinct nth roots given by

n√r(cos 
θ + 2πk

n
+ i sin 

θ + 2πk
n )

where k = 0, 1, 2, .  .  . , n − 1.

For k > n − 1, the roots begin to repeat. For instance, when k = n, the angle

θ + 2πn
n

=
θ
n
+ 2π

is coterminal with θ�n, which is also obtained when k = 0.
The formula for the nth roots of a complex  

rn

Real
axis

Imaginary
axis

n
π2

n
π2

Figure E.4

number z has a nice geometric interpretation,  
as shown in Figure E.4. Note that because the  
nth roots of z all have the same magnitude n√r,
they all lie on a circle of radius n√r with center 
at the origin. Furthermore, because successive 
nth roots have arguments that differ by 2π�n, 
the n roots are equally spaced along the circle.© C
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E10 Appendix E Complex Numbers

Performing Operations In Exercises 1–24, perform the 
operation and write the result in standard form.

 1. (5 + i) + (6 − 2i)
 2. (13 − 2i) + (−5 + 6i)
 3. (8 − i) − (4 − i)
 4. (3 + 2i) − (6 + 13i)
 5. (−2 + √−8) + (5 − √−50)
 6. (8 + √−18) − (4 + 3√2i)
 7. 13i − (14 − 7i)
 8. 22 + (−5 + 8i) + 10i

 9. −(3
2 + 5

2i) + (5
3 + 11

3 i)
10. (1.6 + 3.2i) + (−5.8 + 4.3i)
11. √−6 ∙ √−2

12. √−5 ∙ √−10

13. (√−10)2

14. (√−75)2
15. (1 + i)(3 − 2i)
16. (6 − 2i)(2 − 3i)
17. 6i(5 − 2i)
18. −8i(9 + 4i)
19. (√14 + √10i)(√14 − √10i)
20. (3 + √−5)(7 − √−10)
21. (4 + 5i)2

22. (2 − 3i)2

23. (2 + 3i)2 + (2 − 3i)2

24. (1 − 2i)2 − (1 + 2i)2

Writing a Complex Conjugate In Exercises 25–32, write 
the complex conjugate of the complex number. Then multiply 
the number by its complex conjugate.

25. 5 + 3i 26. 9 − 12i

27. −2 − √5i 28. −4 + √2i

29. 20i  30. √−15

31. √8  32. 1 + √8

Writing in Standard Form In Exercises 33–42, write the 
quotient in standard form.

33. 
6
i
 34. −

10
2i

35. 
4

4 − 5i
 36. 

3
1 − i

37. 
2 + i
2 − i

 38. 
8 − 7i
1 − 2i

39. 
6 − 7i

i
 40. 

8 + 20i
2i

41. 
1

(4 − 5i)2 42. 
(2 − 3i)(5i)

2 + 3i

Performing Operations In Exercises 43–46, perform the 
operation and write the result in standard form.

43. 
2

1 + i
−

3
1 − i

 44. 
2i

2 + i
+

5
2 − i

45. 
i

3 − 2i
+

2i
3 + 8i

 46. 
1 + i

i
−

3
4 − i

E Exercises

 Finding the nth Roots of a Complex Number

Find the three cube roots of z = −2 + 2i.

Solution Because z lies in Quadrant II, the trigonometric form for z is

z = −2 + 2i = √8(cos 135° + i sin 135°).

By the formula for nth roots, the cube roots have the form

6√8(cos 
135° + 360°k

3
+ i sin 

135° + 360°k
3 ).

Finally, for k = 0, 1, and 2, you obtain the roots

 √2(cos 45° + i sin 45°) = 1 + i

 √2(cos 165° + i sin 165°) ≈ −1.3660 + 0.3660i

 √2(cos 285° + i sin 285°) ≈ 0.3660 − 1.3660i.  
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 Appendix E Complex Numbers E11

Using the Quadratic Formula In Exercises 47–54, use 
the Quadratic Formula to solve the quadratic equation.

47. x2 − 2x + 2 = 0

48. x2 + 6x + 10 = 0

49. 4x2 + 16x + 17 = 0

50. 9x2 − 6x + 37 = 0

51. 4x2 + 16x + 15 = 0

52. 9x2 − 6x − 35 = 0

53. 16t2 − 4t + 3 = 0

54. 5s2 + 6s + 3 = 0

Writing in Standard Form In Exercises 55–62, simplify 
the complex number and write it in standard form.

55. −6i3 + i2

56. 4i2 − 2i3

57. −5i5

58. (−i)3

59. (√−75)3

60. (√−2)6

61. 
1
i3

62. 
1

(2i)3

Absolute Value of a Complex Number In Exercises 
63–68, plot the complex number and find its absolute value.

63. −5i 64. −5

65. −4 + 4i 66. 5 − 12i

67. 6 − 7i 68. −8 + 3i

Writing in Trigonometric Form In Exercises 69–76, 
represent the complex number graphically and find the 
trigonometric form of the number.

69. 3 − 3i 70. 2 + 2i

71. √3 + i 72. −1 + √3i

73. −2(1 + √3i) 74. 5
2 (√3 − i)

75. 6i  76. 4

Writing in Standard Form In Exercises 77–82, represent 
the complex number graphically and find the standard form 
of the number.

77. 2(cos 150° + i sin 150°)
78. 5(cos 135° + i sin 135°)
79. 3

2 (cos 300° + i sin 300°)
80. 3

4 (cos 315° + i sin 315°)

81. 3.75(cos 
3π
4

+ i sin 
3π
4 )

82. 8(cos 
π
12

+ i sin 
π
12)

Performing Operations In Exercises 83–86, perform the 
operation and leave the result in trigonometric form.

 83. [3(cos 
π
3
+ i sin 

π
3)][4(cos 

π
6
+ i sin 

π
6)]

 84. [32 (cos 
π
2
+ i sin 

π
2)][6(cos 

π
4
+ i sin 

π
4)]

 85. [ 5
3 (cos 140° + i sin 140°)][ 2

3(cos 60° + i sin 60°)]
 86. 

cos(5π�3) + i sin(5π�3)
cos π + i sin π

Using DeMoivre’s Theorem In Exercises 87–94, use 
DeMoivre’s Theorem to find the indicated power of the 
complex number. Write the result in standard form.

 87. (1 + i)5

 88. (2 + 2i)6

 89. (−1 + i)10

 90. (1 − i)12

 91. 2(√3 + i)7
 92. 4(1 − √3i)3

 93. (cos 
5π
4

+ i sin 
5π
4 )

10

 94. [2(cos 
π
2
+ i sin 

π
2)]

8

Finding nth Roots In Exercises 95–100, (a) use Theorem 
E.2 to find the indicated roots of the complex number, (b) 
represent each of the roots graphically, and (c) write each of 
the roots in standard form.

 95. Square roots of 5(cos 120° + i sin 120°)
 96. Square roots of 16(cos 60° + i sin 60°)

 97. Fourth roots of 16(cos 
4π
3

+ i sin 
4π
3 )

 98. Fifth roots of 32(cos 
5π
6

+ i sin 
5π
6 )

 99. Cube roots of −
125
2

(1 + √3i)

100. Cube roots of −4√2(1 − i)

Solving an Equation In Exercises 101–108, use Theorem 
E.2 to find all the solutions of the equation and represent the 
solutions graphically.

101. x4 − i = 0 102. x3 + 1 = 0

103. x5 + 243 = 0 104. x4 − 81 = 0

105. x3 + 64i = 0 106. x6 − 64i = 0

107. x3 − (1 − i) = 0 108. x4 + (1 + i) = 0

109. Proof Given two complex numbers

  z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2)

  show that

  
z1

z2
=

r1

r2
[cos(θ1 − θ2) + i sin(θ1 − θ2)], z2 ≠ 0.
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