D

Rotation and the General Second-Degree Equation

After rotation of the x - and y-axes counterclockwise through an angle θ, the rotated axes are denoted as the x^{\prime}-axis and y^{\prime}-axis.
Figure D. 1

Rotate the coordinate axes to eliminate the $x y$-term in equations of conics.

- Use the discriminant to classify conics.

Rotation of Axes

Equations of conics with axes parallel to one of the coordinate axes can be written in the general form

$$
A x^{2}+C y^{2}+D x+E y+F=0 . \quad \text { Horizontal or vertical axes }
$$

In this appendix, you will study the equations of conics whose axes are rotated so that they are not parallel to either the x-axis or the y-axis. The general equation for such conics contains an $x y$-term.

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0 \quad \text { Equation in } x y \text {-plane }
$$

To eliminate this $x y$-term, you can use a procedure called rotation of axes. The objective is to rotate the x - and y-axes until they are parallel to the axes of the conic. The rotated axes are denoted as the x^{\prime}-axis and the y^{\prime}-axis, as shown in Figure D.1. After the rotation, the equation of the conic in the new $x^{\prime} y^{\prime}$-plane will have the form

$$
A^{\prime}\left(x^{\prime}\right)^{2}+C^{\prime}\left(y^{\prime}\right)^{2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F^{\prime}=0 . \quad \text { Equation in } x^{\prime} y^{\prime} \text {-plane }
$$

Because this equation has no $x^{\prime} y^{\prime}$-term, you can obtain a standard form by completing the square.

The next theorem identifies how much to rotate the axes to eliminate the $x y$-term and also the equations for determining the new coefficients $A^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$, and F^{\prime}.

THEOREM D. 1 Rotation of Axes

The general second-degree equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

where $B \neq 0$, can be rewritten as

$$
A^{\prime}\left(x^{\prime}\right)^{2}+C^{\prime}\left(y^{\prime}\right)^{2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F^{\prime}=0
$$

by rotating the coordinate axes through an angle θ, where

$$
\cot 2 \theta=\frac{A-C}{B}
$$

The coefficients of the new equation are obtained by making the substitutions

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta
$$

and

$$
y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Original: $x=r \cos \alpha$

$$
y=r \sin \alpha
$$

Rotated: $x^{\prime}=r \cos (\alpha-\theta)$

$$
y^{\prime}=r \sin (\alpha-\theta)
$$

Figure D. 2

Proof To discover how the coordinates in the $x y$-system are related to the coordinates in the $x^{\prime} y^{\prime}$-system, choose a point (x, y) in the original system and attempt to find its coordinates $\left(x^{\prime}, y^{\prime}\right)$ in the rotated system. In either system, the distance r between the point and the origin is the same, so the equations for x, y, x^{\prime}, and y^{\prime} are those given in Figure D.2. Using the formulas for the sine and cosine of the difference of two angles, you obtain

$$
\begin{aligned}
x^{\prime} & =r \cos (\alpha-\theta) \\
& =r(\cos \alpha \cos \theta+\sin \alpha \sin \theta) \\
& =r \cos \alpha \cos \theta+r \sin \alpha \sin \theta \\
& =x \cos \theta+y \sin \theta
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime} & =r \sin (\alpha-\theta) \\
& =r(\sin \alpha \cos \theta-\cos \alpha \sin \theta) \\
& =r \sin \alpha \cos \theta-r \cos \alpha \sin \theta \\
& =y \cos \theta-x \sin \theta .
\end{aligned}
$$

Solving this system for x and y yields

$$
x=x^{\prime} \cos \theta-y^{\prime} \sin \theta \quad \text { and } \quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Finally, by substituting these values for x and y into the original equation and collecting terms, you obtain the following.

$$
\begin{aligned}
& A^{\prime}=A \cos ^{2} \theta+B \cos \theta \sin \theta+C \sin ^{2} \theta \\
& C^{\prime}=A \sin ^{2} \theta-B \cos \theta \sin \theta+C \cos ^{2} \theta \\
& D^{\prime}=D \cos \theta+E \sin \theta \\
& E^{\prime}=-D \sin \theta+E \cos \theta \\
& F^{\prime}=F
\end{aligned}
$$

Now, in order to eliminate the $x^{\prime} y^{\prime}$-term, you must select θ such that $B^{\prime}=0$, as follows.

$$
\begin{aligned}
B^{\prime} & =2(C-A) \sin \theta \cos \theta+B\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& =(C-A) \sin 2 \theta+B \cos 2 \theta \\
& =B(\sin 2 \theta)\left(\frac{C-A}{B}+\cot 2 \theta\right) \\
& =0, \quad \sin 2 \theta \neq 0
\end{aligned}
$$

When $B=0$, no rotation is necessary, because the $x y$-term is not present in the original equation. When $B \neq 0$, the only way to make $B^{\prime}=0$ is to let

$$
\cot 2 \theta=\frac{A-C}{B}, \quad B \neq 0
$$

So, you have established the desired results.

Vertices:
$(\sqrt{2}, 0),(-\sqrt{2}, 0)$ in $x^{\prime} y^{\prime}$-system $(1,1),(-1,-1)$ in $x y$-system
Figure D. 3

Vertices:
$(\pm 2,0)$ in $x^{\prime} y^{\prime}$-system
$(\sqrt{3}, 1),(-\sqrt{3},-1)$ in $x y$-system
Figure D. 4

EXAMPLE 1 Rotation of Axes for a Hyperbola

Write the equation $x y-1=0$ in standard form.
Solution Because $A=0, B=1$, and $C=0$, you have (for $0<\theta<\pi / 2$)

$$
\cot 2 \theta=\frac{A-C}{B}=0 \Rightarrow 2 \theta=\frac{\pi}{2} \quad \square \quad \theta=\frac{\pi}{4} .
$$

The equation in the $x^{\prime} y^{\prime}$-system is obtained by making the following substitutions.

$$
\begin{aligned}
& x=x^{\prime} \cos \frac{\pi}{4}-y^{\prime} \sin \frac{\pi}{4}=x^{\prime}\left(\frac{\sqrt{2}}{2}\right)-y^{\prime}\left(\frac{\sqrt{2}}{2}\right)=\frac{x^{\prime}-y^{\prime}}{\sqrt{2}} \\
& y=x^{\prime} \sin \frac{\pi}{4}+y^{\prime} \cos \frac{\pi}{4}=x^{\prime}\left(\frac{\sqrt{2}}{2}\right)+y^{\prime}\left(\frac{\sqrt{2}}{2}\right)=\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}
\end{aligned}
$$

Substituting these expressions into the equation $x y-1=0$ produces

$$
\begin{gathered}
\left(\frac{x^{\prime}-y^{\prime}}{\sqrt{2}}\right)\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}\right)-1=0 \\
\frac{\left(x^{\prime}\right)^{2}-\left(y^{\prime}\right)^{2}}{2}-1=0 \\
\frac{\left(x^{\prime}\right)^{2}}{(\sqrt{2})^{2}}-\frac{\left(y^{\prime}\right)^{2}}{(\sqrt{2})^{2}}=1
\end{gathered}
$$

This is the equation of a hyperbola centered at the origin with vertices at $(\pm \sqrt{2}, 0)$ in the $x^{\prime} y^{\prime}$-system, as shown in Figure D.3.

EXAMPLE 2 Rotation of Axes for an Ellipse

Sketch the graph of $7 x^{2}-6 \sqrt{3} x y+13 y^{2}-16=0$.
Solution Because $A=7, B=-6 \sqrt{3}$, and $C=13$, you have (for $0<\theta<\pi / 2$)

$$
\cot 2 \theta=\frac{A-C}{B}=\frac{7-13}{-6 \sqrt{3}}=\frac{1}{\sqrt{3}} \quad \square \quad \theta=\frac{\pi}{6}
$$

The equation in the $x^{\prime} y^{\prime}$-system is derived by making the following substitutions.

$$
\begin{aligned}
& x=x^{\prime} \cos \frac{\pi}{6}-y^{\prime} \sin \frac{\pi}{6}=x^{\prime}\left(\frac{\sqrt{3}}{2}\right)-y^{\prime}\left(\frac{1}{2}\right)=\frac{\sqrt{3} x^{\prime}-y^{\prime}}{2} \\
& y=x^{\prime} \sin \frac{\pi}{6}+y^{\prime} \cos \frac{\pi}{6}=x^{\prime}\left(\frac{1}{2}\right)+y^{\prime}\left(\frac{\sqrt{3}}{2}\right)=\frac{x^{\prime}+\sqrt{3} y^{\prime}}{2}
\end{aligned}
$$

Substituting these expressions into the original equation eventually simplifies (after considerable algebra) to

$$
\begin{array}{rlr}
4\left(x^{\prime}\right)^{2}+16\left(y^{\prime}\right)^{2} & =16 \\
\frac{\left(x^{\prime}\right)^{2}}{2^{2}}+\frac{\left(y^{\prime}\right)^{2}}{1^{2}} & =1 . \quad \text { Write in standard form. }
\end{array}
$$

This is the equation of an ellipse centered at the origin with vertices at $(\pm 2,0)$ in the $x^{\prime} y^{\prime}$-system, as shown in Figure D.4.

Figure D. 5

Figure D. 6

In Examples 1 and 2, the values of θ were the common angles 45° and 30°, respectively. Of course, many second-degree equations do not yield such common solutions to the equation

$$
\cot 2 \theta=\frac{A-C}{B} .
$$

Example 3 illustrates such a case.

EXAMPLE 3 Rotation of Axes for a Parabola

Sketch the graph of $x^{2}-4 x y+4 y^{2}+5 \sqrt{5} y+1=0$.
Solution Because $A=1, B=-4$, and $C=4$, you have

$$
\cot 2 \theta=\frac{A-C}{B}=\frac{1-4}{-4}=\frac{3}{4} .
$$

The trigonometric identity $\cot 2 \theta=\left(\cot ^{2} \theta-1\right) /(2 \cot \theta)$ produces

$$
\cot 2 \theta=\frac{3}{4}=\frac{\cot ^{2} \theta-1}{2 \cot \theta}
$$

from which you obtain the equation

$$
\begin{aligned}
6 \cot \theta & =4 \cot ^{2} \theta-4 \\
0 & =4 \cot ^{2} \theta-6 \cot \theta-4 \\
0 & =(2 \cot \theta-4)(2 \cot \theta+1)
\end{aligned}
$$

Considering $0<\theta<\pi / 2$, it follows that $2 \cot \theta=4$. So,

$$
\cot \theta=2 \quad \square \quad \theta \approx 26.6^{\circ}
$$

From the triangle in Figure D.5, you obtain $\sin \theta=1 / \sqrt{5}$ and $\cos \theta=2 / \sqrt{5}$. Consequently, you can write the following.

$$
\begin{aligned}
& x=x^{\prime} \cos \theta-y^{\prime} \sin \theta=x^{\prime}\left(\frac{2}{\sqrt{5}}\right)-y^{\prime}\left(\frac{1}{\sqrt{5}}\right)=\frac{2 x^{\prime}-y^{\prime}}{\sqrt{5}} \\
& y=x^{\prime} \sin \theta+y^{\prime} \cos \theta=x^{\prime}\left(\frac{1}{\sqrt{5}}\right)+y^{\prime}\left(\frac{2}{\sqrt{5}}\right)=\frac{x^{\prime}+2 y^{\prime}}{\sqrt{5}}
\end{aligned}
$$

Substituting these expressions into the original equation produces

$$
\left(\frac{2 x^{\prime}-y^{\prime}}{\sqrt{5}}\right)^{2}-4\left(\frac{2 x^{\prime}-y^{\prime}}{\sqrt{5}}\right)\left(\frac{x^{\prime}+2 y^{\prime}}{\sqrt{5}}\right)+4\left(\frac{x^{\prime}+2 y^{\prime}}{\sqrt{5}}\right)^{2}+5 \sqrt{5}\left(\frac{x^{\prime}+2 y^{\prime}}{\sqrt{5}}\right)+1=0
$$

which simplifies to

$$
5\left(y^{\prime}\right)^{2}+5 x^{\prime}+10 y^{\prime}+1=0
$$

By completing the square, you obtain the standard form

$$
\begin{aligned}
5\left(y^{\prime}+1\right)^{2} & =-5 x^{\prime}+4 \\
\left(y^{\prime}+1\right)^{2} & =(-1)\left(x^{\prime}-\frac{4}{5}\right) . \quad \text { Write in standard form. }
\end{aligned}
$$

The graph of the equation is a parabola with its vertex at $\left(\frac{4}{5},-1\right)$ and its axis parallel to the x^{\prime}-axis in the $x^{\prime} y^{\prime}$-system, as shown in Figure D.6.

Invariants Under Rotation

In Theorem D.1, note that the constant term is the same in both equations-that is, $F^{\prime}=F$. Because of this, F is said to be invariant under rotation. Theorem D. 2 lists some other rotation invariants. The proof of this theorem is left as an exercise (see Exercise 34).

THEOREM D. 2 Rotation Invariants

The rotation of coordinate axes through an angle θ that transforms the equation $A x^{2}+B x y+C y^{2}+D x+E y+F=0$ into the form

$$
A^{\prime}\left(x^{\prime}\right)^{2}+C^{\prime}\left(y^{\prime}\right)^{2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F^{\prime}=0
$$

has the following rotation invariants.

1. $F=F^{\prime}$
2. $A+C=A^{\prime}+C^{\prime}$
3. $B^{2}-4 A C=\left(B^{\prime}\right)^{2}-4 A^{\prime} C^{\prime}$

You can use this theorem to classify the graph of a second-degree equation with an $x y$-term in much the same way you do for a second-degree equation without an $x y$-term. Note that because $B^{\prime}=0$, the invariant $B^{2}-4 A C$ reduces to

$$
B^{2}-4 A C=-4 A^{\prime} C^{\prime} \quad \text { Discriminant }
$$

which is called the discriminant of the equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

Because the sign of $A^{\prime} C^{\prime}$ determines the type of graph for the equation

$$
A^{\prime}\left(x^{\prime}\right)^{2}+C^{\prime}\left(y^{\prime}\right)^{2}+D^{\prime} x^{\prime}+E^{\prime} y^{\prime}+F^{\prime}=0
$$

the sign of $B^{2}-4 A C$ must determine the type of graph for the original equation. This result is stated in Theorem D.3.

THEOREM D. 3 Classification of Conics by the Discriminant

The graph of the equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

is, except in degenerate cases, determined by its discriminant as follows.

1. Ellipse or circle: $\quad B^{2}-4 A C<0$
2. Parabola: $\quad B^{2}-4 A C=0$
3. Hyperbola:
$B^{2}-4 A C>0$

EXAMPLE 4 Using the Discriminant

Classify the graph of each equation.
a. $4 x y-9=0$
b. $2 x^{2}-3 x y+2 y^{2}-2 x=0$
c. $x^{2}-6 x y+9 y^{2}-2 y+1=0$
d. $3 x^{2}+8 x y+4 y^{2}-7=0$

Solution

a. The graph is a hyperbola because

$$
B^{2}-4 A C=16-0>0
$$

b. The graph is a circle or an ellipse because

$$
B^{2}-4 A C=9-16<0
$$

c. The graph is a parabola because

$$
B^{2}-4 A C=36-36=0
$$

d. The graph is a hyperbola because

$$
B^{2}-4 A C=64-48>0
$$

D Exercises

Rotation of Axes In Exercises 1-12, rotate the axes to eliminate the $x y$-term in the equation. Write the resulting equation in standard form and sketch its graph showing both sets of axes.

1. $x y+1=0$
2. $x y-4=0$
3. $x^{2}-10 x y+y^{2}+1=0$
4. $x y+x-2 y+3=0$
5. $x y-2 y-4 x=0$
6. $13 x^{2}+6 \sqrt{3} x y+7 y^{2}-16=0$
7. $5 x^{2}-2 x y+5 y^{2}-12=0$
8. $2 x^{2}-3 x y-2 y^{2}+10=0$
9. $3 x^{2}-2 \sqrt{3} x y+y^{2}+2 x+2 \sqrt{3} y=0$
10. $16 x^{2}-24 x y+9 y^{2}-60 x-80 y+100=0$
11. $9 x^{2}+24 x y+16 y^{2}+90 x-130 y=0$
12. $9 x^{2}+24 x y+16 y^{2}+80 x-60 y=0$

Graphing a Conic In Exercises 13-18, use a graphing utility to graph the conic. Determine the angle θ through which the axes are rotated. Explain how you used the graphing utility to obtain the graph.
13. $x^{2}+x y+y^{2}=10$
14. $x^{2}-4 x y+2 y^{2}=6$
15. $17 x^{2}+32 x y-7 y^{2}=75$
16. $40 x^{2}+36 x y+25 y^{2}=52$
17. $32 x^{2}+50 x y+7 y^{2}=52$
18. $4 x^{2}-12 x y+9 y^{2}+(4 \sqrt{13}+12) x-(6 \sqrt{13}+8) y=91$

Using the Discriminant In Exercises 19-26, use the discriminant to determine whether the graph of the equation is a parabola, an ellipse, or a hyperbola.
19. $16 x^{2}-24 x y+9 y^{2}-30 x-40 y=0$
20. $x^{2}-4 x y-2 y^{2}-6=0$
21. $13 x^{2}-8 x y+7 y^{2}-45=0$
22. $2 x^{2}+4 x y+5 y^{2}+3 x-4 y-20=0$
23. $x^{2}-6 x y-5 y^{2}+4 x-22=0$
24. $36 x^{2}-60 x y+25 y^{2}+9 y=0$
25. $x^{2}+4 x y+4 y^{2}-5 x-y-3=0$
26. $x^{2}+x y+4 y^{2}+x+y-4=0$

Degenerate Conic In Exercises 27-32, sketch the graph (if possible) of the degenerate conic.
27. $y^{2}-4 x^{2}=0$
28. $x^{2}+y^{2}-2 x+6 y+10=0$
29. $x^{2}+2 x y+y^{2}-1=0$
30. $x^{2}-10 x y+y^{2}=0$
31. $(x-2 y+1)(x+2 y-3)=0$
32. $(2 x+y-3)^{2}=0$
33. Invariant Under Rotation Show that the equation $x^{2}+y^{2}=r^{2}$ is invariant under rotation of axes.
34. Proof Prove Theorem D.2.

