Rotate the coordinate axes to eliminate the xy-term in equations of conics.

Equations of conics with axes parallel to one of the coordinate axes can be written in

they are not parallel to either the x-axis or the y-axis. The general equation for such

Rotation and the General Second-Degree Equation

Use the discriminant to classify conics.

 $Ax^2 + Cy^2 + Dx + Ey + F = 0.$

 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$

Rotation of Axes

the general form

counterclockwise through an angle θ , the rotated axes are denoted as the x'-axis and y'-axis.

Cengage

Figure D.1

D)

 $A'(x')^{2} + C'(y')^{2} + D'x' + E'y' + F' = 0.$

Equation in x'y'-plane

Horizontal or vertical axes

Equation in xy-plane

Because this equation has no x'y'-term, you can obtain a standard form by completing the square.

After the rotation, the equation of the conic in the new x'y'-plane will have the form

The next theorem identifies how much to rotate the axes to eliminate the xy-term and also the equations for determining the new coefficients A', C', D', E', and F'.

THEOREM D.1 Rotation of Axes The general second-degree equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ where $B \neq 0$, can be rewritten as $A'(x')^2 + C'(y')^2 + D'x' + E'y' + F' = 0$ by rotating the coordinate axes through an angle θ , where $\cot 2\theta = \frac{A-C}{R}$ The coefficients of the new equation are obtained by making the substitutions $x = x' \cos \theta - y' \sin \theta$ and $y = x' \sin \theta + y' \cos \theta$.

Rotated: $x' = r \cos(\alpha - \theta)$ $y' = r \sin(\alpha - \theta)$ Figure D.2

o Cer

Proof To discover how the coordinates in the *xy*-system are related to the coordinates in the x'y'-system, choose a point (x, y) in the original system and attempt to find its coordinates (x', y') in the rotated system. In either system, the distance *r* between the point and the origin is the same, so the equations for *x*, *y*, *x'*, and *y'* are those given in Figure D.2. Using the formulas for the sine and cosine of the difference of two angles, you obtain

$$x' = r \cos(\alpha - \theta)$$

= $r(\cos \alpha \cos \theta + \sin \alpha \sin \theta)$
= $r \cos \alpha \cos \theta + r \sin \alpha \sin \theta$
= $x \cos \theta + y \sin \theta$

and

 $y' = r \sin(\alpha - \theta)$ = $r(\sin \alpha \cos \theta - \cos \alpha \sin \theta)$ = $r \sin \alpha \cos \theta - r \cos \alpha \sin \theta$ = $y \cos \theta - x \sin \theta$.

Solving this system for x and y yields

$$x = x' \cos \theta - y' \sin \theta$$
 and $y = x' \sin \theta + y' \cos \theta$.

Finally, by substituting these values for *x* and *y* into the original equation and collecting terms, you obtain the following.

$$A' = A \cos^2 \theta + B \cos \theta \sin \theta + C \sin^2 \theta$$
$$C' = A \sin^2 \theta - B \cos \theta \sin \theta + C \cos^2 \theta$$
$$D' = D \cos \theta + E \sin \theta$$
$$E' = -D \sin \theta + E \cos \theta$$
$$F' = F$$

Now, in order to eliminate the x'y'-term, you must select θ such that B' = 0, as follows.

$$B' = 2(C - A) \sin \theta \cos \theta + B(\cos^2 \theta - \sin^2 \theta)$$

= (C - A) sin 2\theta + B cos 2\theta
= B(sin 2\theta) \left(\frac{C - A}{B} + cot 2\theta \right)
= 0, sin 2\theta \neq 0

When B = 0, no rotation is necessary, because the xy-term is not present in the original equation. When $B \neq 0$, the only way to make B' = 0 is to let

$$\cot 2\theta = \frac{A-C}{B}, \quad B \neq 0.$$

So, you have established the desired results.

100

EXAMPLE 1

Rotation of Axes for a Hyperbola

Write the equation xy - 1 = 0 in standard form.

Solution Because A = 0, B = 1, and C = 0, you have (for $0 < \theta < \pi/2$)

$$\cot 2\theta = \frac{A-C}{B} = 0 \implies 2\theta = \frac{\pi}{2} \implies \theta = \frac{\pi}{4}.$$

The equation in the x'y'-system is obtained by making the following substitutions.

$$x = x' \cos \frac{\pi}{4} - y' \sin \frac{\pi}{4} = x' \left(\frac{\sqrt{2}}{2}\right) - y' \left(\frac{\sqrt{2}}{2}\right) = \frac{x' - y'}{\sqrt{2}}$$
$$y = x' \sin \frac{\pi}{4} + y' \cos \frac{\pi}{4} = x' \left(\frac{\sqrt{2}}{2}\right) + y' \left(\frac{\sqrt{2}}{2}\right) = \frac{x' + y'}{\sqrt{2}}$$

Substituting these expressions into the equation xy - 1 = 0 produces

$$\frac{\binom{x'-y'}{\sqrt{2}}\binom{x'+y'}{\sqrt{2}} - 1 = 0}{\frac{(x')^2}{2} - 1 = 0}$$

$$\frac{\frac{(x')^2}{2} - \frac{(y')^2}{\sqrt{2}} - 1 = 0}{\frac{(x')^2}{(\sqrt{2})^2} - \frac{(y')^2}{(\sqrt{2})^2} = 1}.$$
Write in standard form.

This is the equation of a hyperbola centered at the origin with vertices at $(\pm \sqrt{2}, 0)$ in the *x'y'*-system, as shown in Figure D.3.

EXAMPLE 2 Ro

2 Rotation of Axes for an Ellipse

Sketch the graph of $7x^2 - 6\sqrt{3}xy + 13y^2 - 16 = 0$.

Solution Because A = 7, $B = -6\sqrt{3}$, and C = 13, you have (for $0 < \theta < \pi/2$)

$$\cot 2\theta = \frac{A-C}{B} = \frac{7-13}{-6\sqrt{3}} = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6}$$

The equation in the x'y'-system is derived by making the following substitutions.

$$x = x' \cos \frac{\pi}{6} - y' \sin \frac{\pi}{6} = x' \left(\frac{\sqrt{3}}{2}\right) - y' \left(\frac{1}{2}\right) = \frac{\sqrt{3x' - y'}}{2}$$
$$y = x' \sin \frac{\pi}{6} + y' \cos \frac{\pi}{6} = x' \left(\frac{1}{2}\right) + y' \left(\frac{\sqrt{3}}{2}\right) = \frac{x' + \sqrt{3}y'}{2}$$

Substituting these expressions into the original equation eventually simplifies (after considerable algebra) to

$$4(x')^{2} + 16(y')^{2} = 16$$

$$\frac{(x')^{2}}{2^{2}} + \frac{(y')^{2}}{1^{2}} = 1.$$
 Write in standard form.

This is the equation of an ellipse centered at the origin with vertices at $(\pm 2, 0)$ in the x'y'-system, as shown in Figure D.4.

Vertices: $(\sqrt{2}, 0), (-\sqrt{2}, 0)$ in x'y'-system (1, 1), (-1, -1) in xy-system **Figure D.3**

In Examples 1 and 2, the values of θ were the common angles 45° and 30°, respectively. Of course, many second-degree equations do not yield such common solutions to the equation

$$\cot 2\theta = \frac{A-C}{B}.$$

Example 3 illustrates such a case.

EXAMPLE 3 Rotation of Axes for a Parabola

Sketch the graph of $x^2 - 4xy + 4y^2 + 5\sqrt{5}y + 1 = 0$.

Solution Because A = 1, B = -4, and C = 4, you have

$$\cot 2\theta = \frac{A-C}{B} = \frac{1-4}{-4} = \frac{3}{4}.$$

The trigonometric identity $\cot 2\theta = (\cot^2 \theta - 1)/(2 \cot \theta)$ produces

$$\cot 2\theta = \frac{3}{4} = \frac{\cot^2 \theta - 1}{2 \cot \theta}$$

from which you obtain the equation

$$6 \cot \theta = 4 \cot^2 \theta - 4$$

$$0 = 4 \cot^2 \theta - 6 \cot \theta - 4$$

$$0 = (2 \cot \theta - 4)(2 \cot \theta + 1).$$

Considering $0 < \theta < \pi/2$, it follows that $2 \cot \theta = 4$. So,

$$\cot \theta = 2 \implies \theta \approx 26.6^{\circ}$$

From the triangle in Figure D.5, you obtain $\sin \theta = 1/\sqrt{5}$ and $\cos \theta = 2/\sqrt{5}$. Consequently, you can write the following.

$$x = x'\cos\theta - y'\sin\theta = x'\left(\frac{2}{\sqrt{5}}\right) - y'\left(\frac{1}{\sqrt{5}}\right) = \frac{2x' - y'}{\sqrt{5}}$$
$$y = x'\sin\theta + y'\cos\theta = x'\left(\frac{1}{\sqrt{5}}\right) + y'\left(\frac{2}{\sqrt{5}}\right) = \frac{x' + 2y'}{\sqrt{5}}$$

Substituting these expressions into the original equation produces

$$\left(\frac{2x'-y'}{\sqrt{5}}\right)^2 - 4\left(\frac{2x'-y'}{\sqrt{5}}\right)\left(\frac{x'+2y'}{\sqrt{5}}\right) + 4\left(\frac{x'+2y'}{\sqrt{5}}\right)^2 + 5\sqrt{5}\left(\frac{x'+2y'}{\sqrt{5}}\right) + 1 = 0$$

which simplifies to

$$5(y')^2 + 5x' + 10y' + 1 = 0$$

By completing the square, you obtain the standard form

$$5(y' + 1)^{2} = -5x' + 4$$

(y' + 1)^{2} = (-1)(x' - \frac{4}{5}). Write in standard form.

The graph of the equation is a parabola with its vertex at $(\frac{4}{5}, -1)$ and its axis parallel to the *x*'-axis in the *x*'y'-system, as shown in Figure D.6.

Figure D.6

Invariants Under Rotation

In Theorem D.1, note that the constant term is the same in both equations—that is, F' = F. Because of this, F is said to be **invariant under rotation**. Theorem D.2 lists some other rotation invariants. The proof of this theorem is left as an exercise (see Exercise 34).

THEOREM D.2 Rotation Invariants

The rotation of coordinate axes through an angle θ that transforms the equation $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ into the form

 $A'(x')^{2} + C'(y')^{2} + D'x' + E'y' + F' = 0$

has the following rotation invariants.

1. F = F' **2.** A + C = A' + C'**3.** $B^2 - 4AC = (B')^2 - 4A'C'$

You can use this theorem to classify the graph of a second-degree equation with an xy-term in much the same way you do for a second-degree equation without an xy-term. Note that because B' = 0, the invariant $B^2 - 4AC$ reduces to

 $B^2 - 4AC = -4A'C'$ Discriminant

which is called the discriminant of the equation

 $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0.$

Because the sign of A'C' determines the type of graph for the equation

 $A'(x')^{2} + C'(y')^{2} + D'x' + E'y' + F' = 0$

the sign of $B^2 - 4AC$ must determine the type of graph for the original equation. This result is stated in Theorem D.3.

THEOREM D.3 Classification of Conics by the Discriminant The graph of the equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

is, except in degenerate cases, determined by its discriminant as follows.

1. Ellipse or circle:
$$B^2 - 4AC < 0$$

2. *Parabola:* $B^2 - 4AC = 0$

Oengat

3. *Hyperbola:* $B^2 - 4AC > 0$

EXAMPLE 4 Using the Discriminant

Classify the graph of each equation.

a.
$$4xy - 9 = 0$$

a.
$$4xy - 9 = 0$$

b. $2x^2 - 3xy + 2y^2 - 2x = 0$
c. $x^2 - 6xy + 9y^2 - 2y + 1 = 0$
d. $3x^2 + 8xy + 4y^2 - 7 = 0$

0

istribution

Solution

a. The graph is a hyperbola because

 $B^2 - 4AC = 16 - 0 > 0.$

b. The graph is a circle or an ellipse because

$$B^2 - 4AC = 9 - 16 < 0.$$

c. The graph is a parabola because

 $B^2 - 4AC = 36 - 36 = 0.$

d. The graph is a hyperbola because

 $B^2 - 4AC = 64 - 48 > 0.$

Exercises D

Rotation of Axes In Exercises 1-12, rotate the axes to eliminate the xy-term in the equation. Write the resulting equation in standard form and sketch its graph showing both sets of axes.

1. xy + 1 = 0**2.** xy - 4 = 03. $x^2 - 10xy + y^2 + 1 = 0$ 4. xy + x - 2y + 3 = 05. xy - 2y - 4x = 06. $13x^2 + 6\sqrt{3}xy + 7y^2 - 16 = 0$ 7. $5x^2 - 2xy + 5y^2 - 12 = 0$ 8. $2x^2 - 3xy - 2y^2 + 10 = 0$ 9. $3x^2 - 2\sqrt{3}xy + y^2 + 2x + 2\sqrt{3}y = 0$ **10.** $16x^2 - 24xy + 9y^2 - 60x - 80y + 100 = 0$ **11.** $9x^2 + 24xy + 16y^2 + 90x - 130y = 0$ **12.** $9x^2 + 24xy + 16y^2 + 80x - 60y = 0$

- Graphing a Conic In Exercises 13–18, use a graphing utility to graph the conic. Determine the angle θ through which the axes are rotated. Explain how you used the graphing utility to obtain the graph.
- **13.** $x^2 + xy + y^2 = 10$ 14. $x^2 - 4xy + 2y^2 = 6$ **15.** $17x^2 + 32xy - 7y^2 = 75$ **16.** $40x^2 + 36xy + 25y^2 = 52$ 17. $32x^2 + 50xy + 7y^2 = 52$ **18.** $4x^2 - 12xy + 9y^2 + (4\sqrt{13} + 12)x - (6\sqrt{13} + 8)y = 91$

Using the Discriminant In Exercises 19-26, use the discriminant to determine whether the graph of the equation is a parabola, an ellipse, or a hyperbola.

19.
$$16x^2 - 24xy + 9y^2 - 30x - 40y = 0$$

20. $x^2 - 4xy - 2y^2 - 6 = 0$
21. $13x^2 - 8xy + 7y^2 - 45 = 0$
22. $2x^2 + 4xy + 5y^2 + 3x - 4y - 20 = 0$
23. $x^2 - 6xy - 5y^2 + 4x - 22 = 0$
24. $36x^2 - 60xy + 25y^2 + 9y = 0$
25. $x^2 + 4xy + 4y^2 - 5x - y - 3 = 0$
26. $x^2 + xy + 4y^2 + x + y - 4 = 0$

Degenerate Conic In Exercises 27–32, sketch the graph (if possible) of the degenerate conic.

27.
$$y^2 - 4x^2 = 0$$

28. $x^2 + y^2 - 2x + 6y + 10 = 0$
29. $x^2 + 2xy + y^2 - 1 = 0$
30. $x^2 - 10xy + y^2 = 0$
31. $(x - 2y + 1)(x + 2y - 3) = 0$

- **32.** $(2x + y 3)^2 = 0$
- 33. Invariant Under Rotation Show that the equation $x^2 + y^2 = r^2$ is invariant under rotation of axes.
- **34. Proof** Prove Theorem D.2.