c
 Precalculus Review

C. 1 Real Numbers and the Real Number Line

Represent and classify real numbers.

- Order real numbers and use inequalities.
- Find the absolute values of real numbers and find the distance between two real numbers.

Real Numbers and the Real Number Line

Real numbers can be represented by a coordinate system called the real number line or x-axis (see Figure C.1). The real number corresponding to a point on the real number line is the coordinate of the point. As Figure C. 1 shows, it is customary to identify those points whose coordinates are integers.

The real number line
Figure C. 1
The point on the real number line corresponding to zero is the origin and is denoted by 0 . The positive direction (to the right) is denoted by an arrowhead and is the direction of increasing values of x. Numbers to the right of the origin are positive. Numbers to the left of the origin are negative. The term nonnegative describes a number that is either positive or zero. The term nonpositive describes a number that is either negative or zero.

Each point on the real number line corresponds to one and only one real number, and each real number corresponds to one and only one point on the real number line.

Figure C. 2

Each of the four points in Figure C. 2 corresponds to a rational number-one that can be written as the ratio of two integers. (Note that $4.5=\frac{9}{2}$ and $-2.6=-\frac{13}{5}$.) Rational numbers can be represented either by terminating decimals such as $\frac{2}{5}=0.4$ or by repeating decimals such as $\frac{1}{3}=0.333 \ldots=0 . \overline{3}$.

Real numbers that are not rational are irrational. Irrational numbers cannot be represented as terminating or repeating decimals. In computations, irrational numbers are represented by decimal approximations. Here are three familiar examples.

$$
\begin{aligned}
\sqrt{2} & \approx 1.414213562 \\
\pi & \approx 3.141592654 \\
e & \approx 2.718281828
\end{aligned}
$$

(See Figure C.3.)

Irrational numbers
Figure C. 3

$a<b$ if and only if a lies to the left of b.
Figure C. 4

Order and Inequalities

One important property of real numbers is that they are ordered. For two real numbers a and b, a is less than b when $b-a$ is positive. This order is denoted by the inequality
$a<b$.
This relationship can also be described by saying that b is greater than a and writing $b>a$. If three real numbers a, b, and c are ordered such that $a<b$ and $b<c$, then b is between a and c and $a<b<c$.

Geometrically, $a<b$ if and only if a lies to the left of b on the real numbertine (see Figure C.4). For example, $1<2$ because 1 lies to the left of 2 on the real number line.

Several properties used in working with inequalities are listed betow. Similar properties are obtained when $<$ is replaced by \leq and $>$ is replaced by \geq. (The symbols \leq and \geq mean less than or equal to and greater than or equal to, respectively.)

Properties of Inequalities

Let a, b, c, d, and k be real numbers.

1. If $a<b$ and $b<c$, then $a<c$.
2. If $a<b$ and $c<d$, then $a+c<b+d$ Add inequalities.
3. If $a<b$, then $a+k<b+k$.
4. If $a<b$ and $k>0$, then $a k<$
5. If $a<b$ and $k<0$, then $a k>b k$.

Add a constant.

Multiply by a negative constant.

Note that you reverse the inequality when you multiply the inequality by a negative number. For example, if $x<3$, then $-4 x>-12$. This also applies to division by a negative number. So, if $-2 x>4$, then $x<-2$.

A set is a collection of elements. Two common sets are the set of real numbers and the set of points on the real number line. Many problems in calculus involve subsets of one of these tyo sets. In such cases, it is convenient to use set notation of the form $\{x$: condition on $x\}$, which is read as follows.

For example, you can describe the set of positive real numbers as

$$
\{x: x>0\} . \quad \text { Set of positive real numbers }
$$

Similarly, you can describe the set of nonnegative real numbers as

$$
\{x: x \geq 0\} . \quad \text { Set of nonnegative real numbers }
$$

The union of two sets A and B, denoted by $A \cup B$, is the set of elements that are members of A or B or both. The intersection of two sets A and B, denoted by $A \cap B$, is the set of elements that are members of A and B. Two sets are disjoint when they have no elements in common.

The most commonly used subsets are intervals on the real number line. For example, the open interval

$$
(a, b)=\{x: a<x<b\} \quad \text { Open interval }
$$

is the set of all real numbers greater than a and less than b, where a and b are the endpoints of the interval. Note that the endpoints are not included in an open interval. Intervals that include their endpoints are closed and are denoted by

$$
[a, b]=\{x: a \leq x \leq b\} . \quad \text { Closed interval }
$$

The nine basic types of intervals on the real number line are shown in the table below. The first four are bounded intervals and the remaining five are unbounded intervals. Unbounded intervals are also classified as open or closed. The intervals $(-\infty, b)$ and (a, ∞) are open, the intervals $(-\infty, b]$ and $[a, \infty)$ are closed, and the interval $(-\infty, \infty)$ is considered to be both open and closed.

Intervals on the Real Number Line

Note that the symbols ∞ and $-\infty$ refer to positive and negative infinity, respectively. These symbols do not denote real numbers. They simply enable you to describe unbounded conditions more concisely. For instance, the interval $[a, \infty)$ is unbounded to the right because it includes all real numbers that are greater than or equal to a.

EXAMPLE 1 Liquid and Gaseous States of Water

Describe the intervals on the real number line that correspond to the temperatures x (in degrees Celsius) of water in
a. a liquid state.
b. a gaseous state.

Solution

a. Water is in a liquid state at temperatures greater than $0^{\circ} \mathrm{C}$ and less than $100^{\circ} \mathrm{C}$, as shown in Figure C.5(a).

$$
(0,100)=\{x: 0<x<100\}
$$

b. Water is in a gaseous state (steam) at temperatures greater than or eq a to $100^{\circ} \mathrm{C}$, as shown in Figure C.5(b).

$$
[100, \infty)=\{x: x \geq 100\}
$$

(a) Temperature range of water (in degrees Celsius)

(b) Temperature range of steam
(in degrees Celsius)

Figure C. 5

If a real number a is a solution of an inequality, then the inequality is satisfied (is true) when a is substituted for x. The set of all solutions is the solution set of the inequality.

EXAMPLE 2 Solving an Inequality

Solve $2 x-5<7$.

Solution

Checking solutions of $2 x-5<7$
Figure C. 6

The solution set is $(-\infty, 6)$.

In Example 2, all five inequalities listed as steps in the solution are called equivalent because they have the same solution set.

Once you have solved an inequality, check some x-values in your solution set to verify that they satisfy the original inequality. You should also check some values outside your solution set to verify that they do not satisfy the inequality. For example, Figure C. 6 shows that when $x=0$ or $x=5$ the inequality $2 x-5<7$ is satisfied, but when $x=7$ the inequality $2 x-5<7$ is not satisfied.

EXAMPLE 3 Solving a Double Inequality

Solve $-3 \leq 2-5 x \leq 12$.

Solution

Solution set of $-3 \leq 2-5 x \leq 12$
Figure C. 7

$$
\begin{aligned}
& -3 \leq 2-5 x \leq 12 \\
& -3-2 \leq 2-5 x-2 \leq 12-2 \\
& -5 \leq-5 x \leq 10 \\
& \frac{-5}{-5} \geq \frac{-5 x}{-5} \quad \geq \frac{10}{-5} \\
& 1 \geq x \quad \geq-2 \\
& \geq-2
\end{aligned}
$$

Write original inequality.
Subtract 2 from each part.
Simplify.
Divide each part by -5 and reverse both inequalities.

Simplify.
The solution set is $[-2,1]$, as shown in Figure C.7.

The inequalities in Examples 2 and 3 are linear inequalities-that is, they involve first-degree polynomials. To solve inequalities inyolving polynomials of higher degree, use the fact that a polynomial can change signsonly at its real zeros (the x-values that make the polynomial equal to zero). Between two consecutive real zeros, a polynomial must be either entirely positive or entirely negative. This means that when the real zeros of a polynomial are put in order, they divide the real number line into test intervals in which the polynomial has no sign changes. So, if a polynomial has the factored form

$$
\begin{aligned}
& \left(x-r_{1}\right)\left(x-r_{2}\right) \cdots(x \\
& \\
& \text { n the test intervals are }
\end{aligned}
$$

$$
\left(-\infty, r_{1}\right), \quad\left(r_{1}, r_{2}\right) \ldots, \quad\left(r_{n-1}, r_{n}\right), \quad \text { and } \quad\left(r_{n}, \infty\right)
$$

To determine the sign of the polynomial in each test interval, you need to test only one value from the interval.

EXAMPLE 4 Solving a Quadratic Inequality

$$
\text { Solve } x^{2}<x+6
$$

Solution

$$
\begin{aligned}
x^{2} & <x+6 & & \text { Write original inequality. } \\
x^{2}-x-6 & <0 & & \text { Write in general form. } \\
(x-3)(x+2) & <0 & & \text { Factor. }
\end{aligned}
$$

The polynomial $x^{2}-x-6$ has $x=-2$ and $x=3$ as its zeros. So, you can solve the inequality by testing the sign of $x^{2}-x-6$ in each of the test intervals $(-\infty,-2)$, $(-2,3)$, and $(3, \infty)$. To test an interval, choose any number in the interval and determine the sign of $x^{2}-x-6$. After doing this, you will find that the polynomial is positive for all real numbers in the first and third intervals and negative for all real numbers in the second interval. The solution of the original inequality is therefore $(-2,3)$, as shown in Figure C.8.

- REIMARK You are asked to prove these properties in Exercises 73, 75, 76, and 77.

Absolute Value and Distance

If a is a real number, then the absolute value of a is

$$
|a|= \begin{cases}a, & a \geq 0 \\ -a, & a<0\end{cases}
$$

The absolute value of a number cannot be negative. For example, let $a=-4$. Then, because $-4<0$, you have

$$
|a|=|-4|=-(-4)=4
$$

Remember that the symbol $-a$ does not necessarily mean that $-a$ is negative

Operations with Absolute Value

Let a and b be real numbers and let n be a positive integer.

1. $|a b|=|a||b|$
2. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}, \quad b \neq 0$
3. $|a|=\sqrt{a^{2}}$
4. $\left|a^{n}\right|=|a|^{n}$

Properties of Inequalities and Absolute Value

Let a and b be real numbers and let $\mathcal{C b}$ a positive real number.

1. $-|a| \leq a \leq|a|$
2. $|a| \leq k$ if and only if $-k \leq a \leq k$.
3. $|a| \geq k$ if and only if $a \leq k$ or $a \geq k$.
4. Triangle Inequalite: $|a+b| \leq|a|+|b|$

Properties 2 and 3 are also true when \leq is replaced by $<$ and \geq is replaced by $>$.

EXANPRE 5 Solving an Absolute Value Inequality

Solye $|x-3| \leq 2$.
Solution Using the second property of inequalities and absolute value, you can

$$
\begin{array}{rlrl}
-2 & \leq x-3 & \leq 2 & \\
-2+3 & \leq x-3+3 & \leq 2+3 & \\
\text { Write as double inequality. } \\
1 & \leq x \leq 5 d \text { Add } 3 \text { to each part. } \\
x & & \text { Simplify. }
\end{array}
$$

The solution set is $[1,5]$, as shown in Figure C.9.

Solution set of $|x+2|>3$
Figure C. 10

Solution set of $|x-a| \leq d$

Solution set of $|x-a| \geq d$
Figure C. 11

EXAMPLE 6 A Two-Interval Solution Set

Solve $|x+2|>3$.
Solution Using the third property of inequalities and absolute value, you can rewrite the original inequality as two linear inequalities.

$$
\begin{aligned}
x+2<-3 & \text { or } & & x+2>3 \\
x<-5 & & & x>1
\end{aligned}
$$

The solution set is the union of the disjoint intervals $(-\infty,-5)$ and $(1, \infty)$, as shown in Figure C. 10 .

Examples 5 and 6 illustrate the general results shown in Figure C.11. Note that for $d>0$, the solution set for the inequality $|x-a| \leq d$ is a single interval, whereas the solution set for the inequality $|x-a| \geq d$ is the union of tho disjoint intervals.

The distance between two points a and b on the real number line is given by

$$
d=|a-b|=|b-a|
$$

The directed distance from \boldsymbol{a} to \boldsymbol{b} is $\boldsymbol{b}-a$ and the directed distance from \boldsymbol{b} to \boldsymbol{a} is $a-b$, as shown in Figure C. 12

Figure C. 12

Figure C. 13

EXAMPLE 7 Distance on the Real Number Line

The distance between -3 and 4 is

$$
|4-(-3)|=|7|=7 \quad \text { or } \quad|-3-4|=|-7|=7
$$

(See Figure C.13.)
b. The directed distance from -3 to 4 is

$$
4-(-3)=7
$$

c. The directed distance from 4 to -3 is

$$
-3-4=-7
$$

The midpoint of an interval with endpoints a and b is the average value of a and b. That is,

$$
\text { Midpoint of interval }(a, b)=\frac{a+b}{2}
$$

To show that this is the midpoint, you need only show that $(a+b) / 2$ is equidistant from a and b.

C. 1 Exercises

Rational or Irrational? In Exercises 1-10, determine whether the real number is rational or irrational.

1. 0.7
2. -3678
3. $\frac{3 \pi}{2}$
4. $3 \sqrt{2}-1$
5. $4.3 \overline{451}$
6. $\frac{22}{7}$
7. $\sqrt[3]{64}$
8. $0 . \overline{8177}$
9. $4 \frac{5}{8}$
10. $(\sqrt{2})^{3}$

Repeating Decimal In Exercises 11-14, write the repeating decimal as a ratio of two integers using the following procedure. If $x=0.6363$. . , then $100 x=63.6363 \ldots$ Subtracting the first equation from the second produces $99 x=63$ or $x=\frac{63}{99}=\frac{7}{11}$.
11. $0 . \overline{36}$
12. $0.3 \overline{18}$
13. 0.297
14. $0 . \overline{9900}$
15. Using Properties of Inequalities Given $a<b$, determine which of the following are true.
(a) $a+2<b+2$
(b) $5 b<5 a$
(c) $5-a>5-b$
(d) $\frac{1}{a}<\frac{1}{b}$
(e) $(a-b)(b-a)>0$
(f) $a^{2}<b^{2}$
16. Intervals and Graphs on the Real Number Line Complete the table with the appropriate interval notation, set notation, and graph on the real number line.

Interval Notation	Set Notation	
$(-\infty,-4]$		
	$\left\{x: 3 \leq x \leq \frac{y}{2}\right\}$	
$(-1,7)$		

Analyzing an linequallty In Exercises 17-20, verbally describe the subset of real numbers represented by the inequality. Sketch the subset on the real number line, and state whether the interval is bounded or unbounded.
17. $-3<x<3$
18. $x \geq 4$
19. $x \leq 5$
20. $0 \leq x<8$

Using Inequality and Interval Notation In Exercises 21-24, use inequality and interval notation to describe the set.
21. y is at least 4 .
22. q is nonnegative.
23. The interest rate r on loans is expected to be greater than 3\% and no more than 7%.
24. The temperature T is forecast to be above $90^{\circ} \mathrm{F}$ today.

Solving an Inequality In Exercises 25-44, solve the inequality and graph the solution on the real number line.
25. $2 x-1 \geq 0$
27. $-4<2 x-3<4$
29. $\frac{x}{2}+\frac{x}{3}>5$
31. $|x|<1$
33. $\left|\frac{x-3}{2}\right| \geq 5$
35. $|x-a|<b, b>0$
37. $|2 x+1|<5$
39. $\left|1-\frac{2}{3} x\right|<\infty$
41. $x^{2}-2 x+1 \leq 5$
26. $3 x+1 \geq 2 x+2$
28. $0 \leq x+3 \leq 5$
30. $x>\frac{1}{x}$
32.

34. $\left|\frac{x}{2}\right|>3$
36. $|x+2|<5$
38. $|3 x+1| \geq 4$
40. $|9-2 x|<1$
42. $x^{4}-x \leq 0$
44. $2 x^{2}+1<9 x-3$
(D)Stance on the Real Number Line In Exercises 45-48, find the directed distance from a to b, the directed distance from b to a, and the distance between a and b.
45.

46.

47. (a) $a=126, b=75$
(b) $a=-126, b=-75$
48. (a) $a=9.34, b=-5.65$
(b) $a=\frac{16}{5}, b=\frac{112}{75}$

Using Absolute Value Notation In Exercises 49-54, use absolute value notation to define the interval or pair of intervals on the real number line.
49.

50.

51.

52.

53. (a) All numbers that are at most 10 units from 12
(b) All numbers that are at least 10 units from 12
54. (a) y is at most two units from a.
(b) y is less than δ units from c.

Finding the Midpoint In Exercises 55-58, find the midpoint of the interval.
55.

56. $a=-5 \quad b=-\frac{3}{2}$

57. (a) $[7,21]$
(b) $[8.6,11.4]$
58. (a) $[-6.85,9.35]$
(b) $[-4.6,-1.3]$
59. Profit The revenue R from selling x units of a product is $R=115.95 x$
and the cost C of producing x units is
$C=95 x+750$.
To make a (positive) profit, R must be greater than C. For what values of x will the product return a profit?
60. Fleet Costs A utility company has a fleet of varis. The annual operating cost C (in dollars) of each van is estimated to be
$C=0.32 m+2300$
where m is measured in miles. The company wants the annual operating cost of each van to be less thant $\$ 10,000$. To do this, m must be less than what value?
61. Fair Coin To determine whether a coin is fair (has an equal probability of landing ails up or heads up), you toss the coin 100 times and record the number of heads x. The coin is declared unfair when
$\left|\frac{x-50}{5}\right| \geq 1.645$.
For what walues of x will the coin be declared unfair?
62. DaProduction The estimated daily oil production p at a refinery is
$|p-2,250,000|<125,000$
where p is measured in barrels. Determine the high and low production levels.

Which Number Is Greater? In Exercises 63 and 64, determine which of the two real numbers is greater.
63. (a) π or $\frac{355}{113}$
64. (a) $\frac{224}{151}$ or $\frac{144}{97}$
(b) π or $\frac{22}{7}$
(b) $\frac{73}{81}$ or $\frac{6427}{7132}$
65. Approximation-Powers of 10 Light travels at the speed of 2.998×10^{8} meters per second. Which best estimates the distance in meters that light travels in a year?
(a) 9.5×10^{5}
(b) 9.5×10^{15}
(c) 9.5×10^{12}
(d) 9.6×10^{16}
66. Writing The accuracy of an approximation of a number is related to how many significant digits there are in the approximation. Write a definition of significant digits and illustrate the concept with examples.

True or False? In Exercises 67-72, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
67. The reciprocal of a nonzero integer is an integer.
68. The reciprocat of a nonzero rational number is a rational number.
69. Each real number is either rational or irrational.
70. The absolute value of each real number is positive.
71. If $x<0$, then $\sqrt{x^{2}}=-x$.
72. If a and b are any two distinct real numbers, then $a<b$ or $a>b$.

Proof In Exercises 73-80, prove the property.
73. $|a b|=|a||b|$
74. $|a-b|=|b-a|$
[Hint: $(a-b)=(-1)(b-a)]$
75. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}, \quad b \neq 0$
76. $|a|=\sqrt{a^{2}}$
77. $\left|a^{n}\right|=|a|^{n}, \quad n=1,2,3, \ldots$
78. $-|a| \leq a \leq|a|$
79. $|a| \leq k$ if and only if $-k \leq a \leq k, \quad k>0$.
80. $|a| \geq k$ if and only if $a \leq-k$ or $a \geq k, \quad k>0$.
81. Proof Find an example for which $|a-b|>|a|-|b|$, and an example for which $|a-b|=|a|-|b|$. Then prove that $|a-b| \geq|a|-|b|$ for all a, b.
82. Maximum and Minimum Show that the maximum of two numbers a and b is given by the formula $\max (a, b)=\frac{1}{2}(a+b+|a-b|)$.

Derive a similar formula for $\min (a, b)$.

C. 2 The Cartesian Plane

- Understand the Cartesian plane.
- Use the Distance Formula to find the distance between two points and use the

Midpoint Formula to find the midpoint of a line segment.
Find equations of circles and sketch the graphs of circles.

The Cartesian Plane

Just as you can represent real numbers by points on a real number line, you cansepresent ordered pairs of real numbers by points in a plane called the rectangular coordinate system, or the Cartesian plane, after the French mathematician René Descartes.

The Cartesian plane is formed by using two real number lines intersecting at right angles, as shown in Figure C.14. The horizontal real number line is usually called the \boldsymbol{x}-axis, and the vertical real number line is usually called the \boldsymbol{y}-axis. The point of intersection of these two axes is the origin. The two axes divide the plane into four parts called quadrants.

The Cartesian plane
Figure C. 14

Points represented by ordered pairs
Figure C. 15

Each point in the plane is identified by an ordered pair (x, y) of real numbers x and y, called the coordinates of the point. The number x represents the directed distance from the y-axis to the point, and the number y represents the directed distance from the x-axis to the point (see Figure C.14). For the point (x, y), the first coordinate is the \boldsymbol{x}-coordinate or abscissa, and the second coordinate is the \boldsymbol{y}-coordinate or ordinate. For example, Figure C. 15 shows the locations of the points $(-1,2),(3,4),(0,0),(3,0)$, and $(-2,-3)$ in the Cartesian plane. The signs of the coordinates of a point determine the quadrant in which the point lies. For instance, if $x>0$ and $y<0$, then the point (x, y) lies in Quadrant IV.

Note that an ordered pair (a, b) is used to denote either a point in the plane or an open interval on the real number line. This, however, should not be confusing-the nature of the problem should clarify whether a point in the plane or an open interval is being discussed.

The Distance and Midpoint Formulas

Recall from the Pythagorean Theorem that, in a right triangle, the hypotenuse c and sides a and b are related by $a^{2}+b^{2}=c^{2}$. Conversely, if $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle (see Figure C.16).

The Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
Figure C. 16
Now, consider the problem of determining the distance d between the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane. If the points lie on a horizontal line, then $y_{1}=y_{2}$ and the distance between the points is $\left|x_{2}-x_{1}\right|$. If the points lie on a vertical line, then $x_{1}=x_{2}$ and the distance between the points is $\left|y_{2}-y_{1}\right|$. When the two points do not lie on a horizontal or vertical line, they can be used to form a right triangle, as shown in Figure C.17. The length of the vertical side of the triangle is $\left|y_{2}-y_{1}\right|$, and the length of the horizontal side is $\left|x_{2}-x_{1}\right|$. By the Pythagorean Theorem, it follows that

$$
\begin{aligned}
d^{2} & =\left|x_{2}-x_{1}\right|^{2}+\left|y_{2} y_{4}\right|^{2} \\
d & =\sqrt{\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}}
\end{aligned}
$$

Replacing $\left|x_{2}-x_{1}\right|^{2}$ and $\left|y_{2}-y_{1}\right|^{2}$ by the equivalent expressions $\left(x_{2}-x_{1}\right)^{2}$ and $\left(y_{2}-y_{1}\right)^{2}$ produces the Distance Formula.

Distance Formula

The distance d between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane is given by

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

EXAMPLE 1 Finding the Distance Between Two Points

Find the distance between the points $(-2,1)$ and $(3,4)$.

Solution

$$
\begin{array}{rlr}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \\
& \text { Distance Formula } \\
& =\sqrt{[3-(-2)]^{2}+(4-1)^{2}} & \\
& \text { Substitute for } x_{1}, y_{1}, x_{2}, \text { and } y_{2} . \\
& =\sqrt{5^{2}+3^{2}} & \\
& =\sqrt{25+9} & \\
& \approx 5.83 &
\end{array}
$$

Verifying a right triangle
Figure C. 18

Figure C. 19

Figure C.20

EXAMPLE 2 Verifying a Right Triangle

Verify that the points $(2,1),(4,0)$, and $(5,7)$ form the vertices of a right triangle.
Solution Figure C. 18 shows the triangle formed by the three points. The lengths of the three sides are as follows.

$$
\begin{aligned}
& d_{1}=\sqrt{(5-2)^{2}+(7-1)^{2}}=\sqrt{9+36}=\sqrt{45} \\
& d_{2}=\sqrt{(4-2)^{2}+(0-1)^{2}}=\sqrt{4+1}=\sqrt{5} \\
& d_{3}=\sqrt{(5-4)^{2}+(7-0)^{2}}=\sqrt{1+49}=\sqrt{50}
\end{aligned}
$$

Because

$$
d_{1}^{2}+d_{2}^{2}=45+5=50
$$

and

$$
d_{3}^{2}=50
$$

Sum of squares of sides
you can apply the Pythagorean Theorem to conclude that the triangle is a right triangle.

EXAMPLE 3 Using the Distance Formula

Find x such that the distance between $(x, 3)$ and $(2,-1)$ is 5 .
Solution Using the Distance Formula, you can write the following.

$$
\begin{aligned}
5 & =\sqrt{(x-2)^{2}+[3-(-1)]^{2}} \\
25 & =\left(x^{2}-4 x+4\right)+16 \\
0 & =x^{2}-4 x-5 \\
0 & =(x-5)(x+1)
\end{aligned}
$$

Distance Formula
Square each side.
Write in general form.
Factor.
So, $x=5$ or $x=-1$ andyou can conclude that there are two solutions. That is, each of the points $(5,3)$ and $(-1,3)$ lies five units from the point $(2,-1)$, as shown in Figure C. 19 .

The coordimates of the midpoint of the line segment joining two points can be found by"averaging" the x-coordinates of the two points and "averaging" the y-coordinates of the two points. That is, the midpoint of the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Midpoint Formula

For instance, the midpoint of the line segment joining the points $(-5,-3)$ and $(9,3)$ is

$$
\left(\frac{-5+9}{2}, \frac{-3+3}{2}\right)=(2,0)
$$

as shown in Figure C.20.

Definition of a circle
Figure C. 21

Figure C. 22

Equations of Circles

A circle can be defined as the set of all points in a plane that are equidistant from a fixed point. The fixed point is the center of the circle, and the distance between the center and a point on the circle is the radius (see Figure C.21).

You can use the Distance Formula to write an equation for the circle with center (h, k) and radius r. Let (x, y) be any point on the circle. Then the distance between (x, y) and the center (h, k) is given by

$$
\sqrt{(x-h)^{2}+(y-k)^{2}}=r
$$

By squaring each side of this equation, you obtain the standard form of the equation of a circle.

Standard Form of the Equation of a Circle

The point (x, y) lies on the circle of radius r and center (h, k) if and only if

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

The standard form of the equation of a circle with center at the origin, $(h, k)=(0,0)$, is

$$
x^{2}+y^{2}=r^{2}
$$

If $r=1$, then the circle is called the unit circle.

EXAMPLE 4 Writing the Equation of a Circle

The point $(3,4)$ lies on a circle whose center is at $(-1,2)$, as shown in Figure C.22. Write the standard form of the equation of this circle.

Solution The radius of the circle is the distance between $(-1,2)$ and $(3,4)$.

$$
r=\sqrt{[3-(-1)]^{2}+(4-2)^{2}}=\sqrt{16+4}=\sqrt{20}
$$

Youcan write the standard form of the equation of this circle as

$$
[x-(-1)]^{2}+(y-2)^{2}=(\sqrt{20})^{2}
$$

$$
(x+1)^{2}+(y-2)^{2}=20 . \quad \text { Write in standard form }
$$

By squaring and simplifying, the equation $(x-h)^{2}+(y-k)^{2}=r^{2}$ can be written in the following general form of the equation of a circle.

$$
A x^{2}+A y^{2}+D x+E y+F=0, \quad A \neq 0
$$

To convert such an equation to the standard form

$$
(x-h)^{2}+(y-k)^{2}=p
$$

you can use a process called completing the square. If $p>0$, then the graph of the equation is a circle. If $p=0$, then the graph is the single point (h, k). If $p<0$, then the equation has no graph.

A circle with a radius of 1 and center at $\left(-\frac{5}{2}, 2\right)$
Figure C. 23

EXAMPLE 5 Completing the Square

Sketch the graph of the circle whose general equation is

$$
4 x^{2}+4 y^{2}+20 x-16 y+37=0
$$

Solution To complete the square, first divide by 4 so that the coefficients of x^{2} and y^{2} are both 1 .

$$
\begin{aligned}
& 4 x^{2}+4 y^{2}+20 x-16 y+37=0 \\
& x^{2}+y^{2}+5 x-4 y+\frac{37}{4}=0 \\
& \left(x^{2}+5 x+\right)+\left(y^{2}-4 y+\right)=-\frac{37}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \left(x+\frac{5}{2}\right)^{2}+(y-2)^{2}=1
\end{aligned}
$$

Note that you complete the square by adding the square of half the coefficient of x and the square of half the coefficient of y to each side of the equation. The circle is centered at $\left(-\frac{5}{2}, 2\right)$ and its radius is 1 , as shown in Figure C.23.

You have now reviewed some fundamental concepts of analytic geometry. Because these concepts are in common use today, it is easy to overlook their revolutionary nature. At the time analytic geometry was being developed by Pierre de Fermat and René Descartes, the two major branches of mathematics-geometry and algebrawere largely independent of each other. Circles belonged to geometry, and equations belonged to algebra. The coordination of the points on a circle and the solutions of an equation belongs to what is now called analytic geometry.

It is important to become skilled in analytic geometry so that you can move easily between geometry and algebra. For instance, in Example 4, you were given a geometric description of a circle and were asked to find an algebraic equation for the circle So, you were moving from geometry to algebra. Similarly, in Example 5, you were given an algebraic equation and asked to sketch a geometric picture. In this case, you were moving from algebra to geometry. These two examples illustrate the two most common problems in analytic geometry.

1. Given a graph, find its equation.

2. Given an equation, find its graph.

$$
\text { Algebra } \quad \square \text { Geometry }
$$

Using the Distance and Midpoint Formulas In Exercises 1-6, (a) plot the points, (b) find the distance between the points, and (c) find the midpoint of the line segment joining the points.

1. $(2,1),(4,5)$
2. $(-3,2),(3,-2)$
3. $\left(\frac{1}{2}, 1\right),\left(-\frac{3}{2},-5\right)$
4. $\left(\frac{2}{3},-\frac{1}{3}\right),\left(\frac{5}{6}, 1\right)$
5. $(1, \sqrt{3}),(-1,1)$
6. $(-2,0),(0, \sqrt{2})$

Locating a Point In Exercises 7-10, determine the quadrant(s) in which (x, y) is located so that the condition(s) is (are) satisfied.
7. $x=-2$ and $y>0$
8. $y<-2$
9. $x y>0$
10. $(x,-y)$ is in Quadrant II.

Vertices of a Polygon In Exercises 11-14, show that the points are the vertices of the polygon. (A rhombus is a quadrilateral whose sides are all the same length.)

Vertices

11. $(4,0),(2,1),(-1,-5)$
12. $(1,-3),(3,2),(-2,4)$
13. $(0,0),(1,2),(2,1),(3,3)$
14. $(0,1),(3,7),(4,4),(1,-2)$
15. Number of Stores The table shows the number y of Target stores for each year x from 2006 through 2015. Select reasonable scales on the coordinate âxes and plot the points (x, y). (Source: Target Corp.)

Year, x	2006	2007	2008	2009	2010
Number, y	1488	1591	1682	1740	1750

Year, x	2011	2012	2013	2014	2015
Number y	1763	1778	1917	1790	1792

16. Coptrecture Plot the points $(2,1),(-3,5)$, and $(7,-3)$ in a rectangular coordinate system. Then change the sign of the x-coordinate of each point and plot the three new points in the same rectangular coordinate system. What conjecture can you make about the location of a point when the sign of the you make about the location of a point when the sign of the
x-coordinate is changed? Repeat the exercise for the case in which the signs of the y-coordinates are changed.

Collinear Points? In Exercises 17-20, use the Distance Formula to determine whether the points lie on the same line.
17. $(0,-4),(2,0),(3,2)$
18. $(0,4),(7,-6),(-5,11)$

Polygon

Right triangle
Isosceles triangle Rhombus
Parallelogram

ber y of

19. $(-2,1),(-1,0),(2,-2)$
20. $(-1,1),(3,3),(5,5)$

Using the Distance Formula In Exercises 21 and 22, find x such that the distance between the points is 5 .
21. $(0,0),(x,-4)$
22. $(2,-1)$,

Using the Distance Formula In Exercises 23 and 24, find y such that the distance between the points is 8 .
23. $(0,0),(3, y)$
24. 5.1$),(5, y)$
25. Using the Midpoint Kormula Use the Midpoint Formula to find the three points that divide the line segment joining $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ into four equal parts.
26. Using the Midpoint Formula Use the result of Exercise 25 to find the points that divide the line segment joining the given points into four equal parts.
(a) $(1,-2),(4,-1)$
(b) $(-2,-3),(0,0)$

Matoning In Exercises 27-30, match the equation with its graph. [The graphs are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

27. $x^{2}+y^{2}=1$
28. $(x-1)^{2}+(y-3)^{2}=4$
29. $(x-1)^{2}+y^{2}=0$
30. $\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{3}{4}\right)^{2}=\frac{1}{4}$

Writing the Equation of a Circle In Exercises 31-38, write the standard form of the equation of the circle.
31. Center: $(0,0)$
Radius: 3
33. Center: $(2,-1)$
Radius: 4
32. Center: $(0,0)$
Radius: 5
34. Center: $(-4,3)$
Radius: $\frac{5}{8}$
35. Center: $(-1,2)$

Point on circle: $(0,0)$
36. Center: $(3,-2)$

Point on circle: $(-1,1)$
37. Endpoints of a diameter: $(2,5),(4,-1)$
38. Endpoints of a diameter: $(1,1),(-1,-1)$
39. Satellite Communication Write the standard form of the equation for the path of a communications satellite in a circular orbit 22,000 miles above Earth. (Assume that the radius of Earth is 4000 miles.)
40. Building Design A circular air duct of diameter D is fit firmly into the right-angle corner where a basement wall meets the floor (see figure). Find the diameter of the largest water pipe that can be run in the right-angle corner behind the air duct.

Writing the Equation of a Circle In Exercises 41-48, write the standard form of the equation of the circle and sketch its graph.
41. $x^{2}+y^{2}-2 x+6 y+6=0$
42. $x^{2}+y^{2}-2 x+6 y-15=0$
43. $x^{2}+y^{2}-2 x+6 y+10=0$
44. $3 x^{2}+3 y^{2}-6 y-1=0$
45. $2 x^{2}+2 y^{2}-2 x-2 y-3=0$
46. $4 x^{2}+4 y^{2}-4 x+2 y-1=0$
47. $16 x^{2}+16 y^{2}+16 x+40 y-7=0$
48. $x^{2}+y^{2}-4 x+2 y+3=0$

Graphing a Circle In Exercises 49 and 50, use a graphing utility to graph the equation. Use a square setting. (Hint: It may be necessary to solve the equation for y and graph the resulting two equations.)
49. $4 x^{2}+4 y^{2}-4 x+24 y-63=0$
50. $x^{2}+y^{2}-8 x-6 y-11=0$

Sketch (6) Graph of an Inequality In Exercises 51 and 52, sketch the set of all points satisfying the inequality. Use a graphing utility to verify your result.
51. $x^{2}+y^{2}-4 x+2 y+1 \leq 0$
52. $(x-1)^{2}+\left(y-\frac{1}{2}\right)^{2}>1$
53. Proof Prove that
$\left(\frac{2 x_{1}+x_{2}}{3}, \frac{2 y_{1}+y_{2}}{3}\right)$
is one of the points of trisection of the line segment joining $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Find the midpoint of the line segment joining
$\left(\frac{2 x_{1}+x_{2}}{3}, \frac{2 y_{1}+y_{2}}{3}\right)$
and $\left(x_{2}, y_{2}\right)$ to find the second point of trisection.
54. Finding Points of Trisection Use the results of Exercise 53 to find the points of trisection of the line segment joining each pair of points.
(a) $(1,-2),(4,1)$
(b) $(-2,-3),(0,0)$

True or False? In Exercises $\mathbf{5 5 - 5 8}$, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.
55. If $a b<0$, then the point (a, b) lies in either Quadrant II or Quadrant IV.
56. The distance between the points $(a+b, a)$ and $(a-b, a)$ is $2 b$.
57. If the distance between two points is zero, then the two points must coincide.
58. If $a b=0$, then the point (a, b) lies on the x-axis or on the y-axis.

Proof In Exercises 59-62, prove the statement.
59. The line segments joining the midpoints of the opposite sides of a quadrilateral bisect each other.
60. The perpendicular bisector of a chord of a circle passes through the center of the circle.
61. An angle inscribed in a semicircle is a right angle.
62. The midpoint of the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

